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Créneaux Descriptifs

8h30 - 9h Accueil, présentation des intervenants, description des ateliers

9h - 10h30 Exposés de Maxime Egea et François Bernard

10h30 - 12h Démarrage des ateliers

Déjeuner

14h - 15h30 Exposés de Fathi Ben Aribi et Salvador Jiménez

15h30 - 16h Dégustation des πes et votes

16h - 17h Reprise des ateliers

17h Clôture du π-day

Figure 1 – QR code pour le vote de la meilleure Pie.



1 Exposés

1.1 Maxime Egea

Titre : À la découverte des châınes de Markov.

Résumé : Introduites par Andrëı Markov en 1906, les châınes de Markov occupent aujourd’hui
une place centrale dans la recherche en probabilités. Cette présentation sera l’occasion de découvrir
ces outils mathématiques au travers d’exemples simples, concrets et variés. De manière intuitive et
accessible, nous explorerons un théorème important lié à la stabilité de ces châınes, qui permettra
de répondre à certaines questions posées au cours de la présentation.

1.2 François Bernard

Titre : Résultant et discriminant : démêler les racines du problème.

Résumé : Étant donné un polynôme complexe de degré 2, tous les bacheliers connaissent la formule
≪ b2 − 4ac ≫. Cet outil, appelé discriminant, permet de déterminer le nombre de racines distinctes
du polynôme. En effet, le discriminant s’annule si et seulement si le polynôme admet une unique
racine. Dans cette présentation, nous introduirons un outil plus général : le résultant. Pour deux
polynômes de degrés quelconques, le résultant est une formule exprimée en fonction de leurs coeffi-
cients qui s’annule si et seulement si les polynômes partagent une racine commune. En particulier,
en calculant le résultant d’un polynôme avec sa dérivée, on obtient une généralisation de la formule
du discriminant aux polynômes de degrés arbitraires. Après avoir expliqué la définition de ces deux
outils, nous présenterons quelques-unes de leurs nombreuses applications.

1.3 Fathi Ben Aribi

Titre : La théorie des nœuds, un domaine très attachant.

Résumé : Avez-vous déjà noué une ficelle ? Bravo, vous avez toutes les qualifications requises pour
venir découvrir la théorie des nœuds.

D’abord initiée par des physiciens pour décrire les atomes, et récemment utilisée par des biolo-
gistes pour détricoter l’ADN de nos cellules, cette théorie mathématique vise à classifier les nœuds,
à l’aide d’outils variés, comme les... coloriages ?

Si cela vous intrigue, venez rejoindre cet atelier théorique et pratique pour comprendre de nou-
velles ficelles des mathématiques !

1.4 Salvador Jiménez

Titre : Le calcul fractionnaire comme outil de modélisation.

Résumé : Le calcul fractionnaire étend les intégrales et les dérivées à des ordres non-entiers. On
l’utilise pour modéliser la non-localité ou les effets de mémoire dans des systèmes. Nous traiterons
différents exemples et applications.



2 Ateliers

2.1 Un ascenseur pas pratique — Théo Jamin

Vous venez de monter dans un ascenseur possédant seulement 4 boutons :

— un bouton permet de monter de 5 étages,

— un autre permet de descendre de 5 étages,

— un troisième propose de monter de 7 étages,

— et le dernier, de descendre de 7 étages.

On supposera qu’il n’y a pas de limite d’étages en descendant ni en montant.

1. Est-il possible d’aller au 243ème étage avec cet ascenseur ?

2. De manière plus générale, à quel étage peut-on se rendre ?

3. Que se passe-t-il si je change 5 par 11 et 7 par 17 ? Ou encore par n et m ?

4. Pouvez-vous trouver un algorithme pour se rendre (si cela est possible) à l’étage ℓ ?

5. Si l’on impose que l’ascenseur ne peut plus descendre en dessous du rez-de-chaussée ?

2.2 Une lettre d’Euler — Théo Jamin

Vous avez reçu une lettre d’Euler. Malheureusement, vous venez de faire tomber votre café
dessus... Vous l’ouvrez et découvrez qu’une partie est illisible. Vous lisez

J’ai trouvé une élégante formule qui relie le nombre de sommets s, de faces f et d’arêtes a de
n’importe quel polyèdre convexe de l’espace :

s− a+ f = 2.

Pourriez-vous imaginer une preuve que vous pourriez transmettre à la communauté mathématique ?

2.3 Un passager anarchiste — Théo Jamin

Un avion a des places numérotées de 1 à n, avec n un entier naturel. Le jour de l’embarquement,
toutes les places ont été attribuées à un passager et les passagers se présentent dans l’ordre de leurs
numéros de siège. Le premier passager, ne respectant pas les règles, s’assoit au hasard (il est possible
qu’il s’assoie à sa place attitrée). Les passagers suivants s’assoient à leur place attitrée si elle est
libre et sinon s’assoient au hasard.

1. Pour n = 2, 3 ou 4, déterminer la probabilité que le dernier passager puisse s’asseoir à sa place.

2. Déterminer cette probabilité pour n quelconque.

2.4 Un jeu dangereux — Théo Jamin

Vous participez à un jeu dans lequel, à chaque fois qu’une personne est touchée elle est éliminée.
Vous êtes disposés en cercle et on vous attribue un numéro de 1 à n (pour n le nombre de joueurs)
dans le sens des aiguilles d’une montre. Le premier joueur touche la personne suivante, qui est donc
éliminée. Le joueur suivant fait de même et le jeu continue jusqu’à ce qu’il n’y ait plus qu’un joueur
restant qui est déclaré vainqueur. Trouver un critère pour choisir votre place en fonction du nombre
de joueurs n.



2.5 Le chat et la souris — Théo Jamin

Vous êtes dans votre jardin et vous venez de voir une souris tomber dans votre piscine (tout à
fait ronde). Votre chat, comme tous les chats, aime les souris mais a horreur de l’eau. Vous notez
que votre chat se déplace quatre fois plus vite que la souris.

1×
4×

La question que vous vous poser est donc la suivante : la souris réussira t-elle à sortir de la
piscine sans se faire attraper par le chat ?

2.6 Les maisons de Dudeney — Théo Jamin

Trois familles voisines se détestant mutuellement ont besoin d’eau, d’électricité et de gaz et
doivent donc accéder quand elles le veulent aux trois usines. Vous êtes le maire de la ville où
habitent ces familles. Elles vous demandent de l’aide pour l’accès aux usines et expliquent qu’elles
souhaitent que vous construisiez les routes d’accès de chacune des maisons à chacune des usines,
cependant, elles ne doivent pas se croiser pour éviter tout problème. Avez-vous une solution ? Que
se passe t-il si les familles habitent sur une autre planète possédant une géométrie différente de celle
de la terre ?

Peut-être que le groupe ayant reçu la lettre d’Euler pourra vous aider...

2.7 The Flame Fractal Algorithm — Théo Jamin

L’objectif de cet atelier est de construire informatiquement des fractales en suivant la méthode
FFA et d’étudier les aspects mathématiques. Les fractales obtenues peuvent ressembler à

Figure 2 – Exemple de ≪ flame fractal ≫



Définition 1. Soit f : R2 → R2 une fonction et soit 0 < k < 1. On dit que f est k-contractante si

∀p, p′ ∈ R2, d(f(p)− f(p′)) ≤ kd(p, p′)

Fixons maintenant n applications f1, . . . , fn : R2 → R2 k-contractantes. On s’intéresse à l’en-
semble S ⊂ R2 tel que

S =

n⋃
i=1

fi(S).

A priori, cet ensemble est difficile à calculer mais nous allons l’approcher informatiquement en
suivant l’algorithme ≪ chaos game ≫.

Définition 2 (Chaos game algorithm). Soit N ∈ N et (x0, y0) ∈ [−1, 1]2 choisit aléatoirement.
L’algorithme est le suivant
Pour k = 1 jusqu’à N :

1. On choisit aléatoirement i ∈ [[1, n]],

2. on calcule (xk, yk) = fi(xk−1, yk−1),

3. dessiner (xk, yk) dès que k > 20.

Voici donc l’atelier proposé (vous pouvez répondre aux questions dans le désordre).

2.7.1 Aspects Mathématiques

1. Montrer que les fonctions

f1(x, y) =
(x
2
,
y

2

)
, f2(x, y) =

(
x+ 1

2
,
y

2

)
et f3(x, y) =

(
x

2
,
y + 1

2

)
sont contractantes.

2. Montrer que la composée de fonctions k-contractantes est encore contractante (on pourra
préciser le coefficient de contraction).

3. En supposant que toutes les fonctions fi sont
1
2 -contractantes, montrer que

∀k > 20, d((xk, yk), S) < 10−6

(autrement dit, après 20 itérations, les points (xk, yk) sont très proches de S).

2.7.2 Aspects informatique

1. Coder l’algorithme chaos game qui prend comme argument n-fonctions et N itérations.

2. Le tester pour les fonctions f1, f2 et f3 données précédemment.

3. Attribuer à chaque fonction fi une couleur ci et dessiner à chaque étape le point (xk, yk) =
fi(xk−1, yk−1) avec la couleur ci.

4. Lorsque l’algorithme tourne, rendez-vous sur le site https://flam3.com/flame_draves.pdf

et remplacer les fonctions f1, f2 et f3 par celles proposées dans le document.

5. Amusez-vous à faire des fractales !

2.8 Cardinaux de N, Z et Q — Théo Jamin

1. Soit A ⊂ N un sous-ensemble infini. Montrer que A et N sont en bijection.

2. Montrer que
f : N2 → N∗, (n,m) 7→ 2m(2n+ 1)

définit une bijection entre N2 et N∗.

3. Montrer qu’il existe une bijection entre Q et N. En existe t-il une entre N et R ?

https://flam3.com/flame_draves.pdf


2.9 Groupe du Rubik’s cube — Théo Jamin

On appelle groupe la donnée de (G,×) un ensemble G muni d’une loi interne

× : G×G → G

telle que

1. la loi × est associative :

∀x, y, z ∈ G, x× (y × z) = (x× y)× z.

2. il existe e ∈ G, appelé élément neutre, qui vérifie

∀x ∈ G, x× e = e× x = x.

3. tout élément de G possède un symétrique

∀x ∈ G, ∃y ∈ G, x× y = e.

On peut montrer que le symétrique est unique et on le notera alors x−1. Après avoir cherché quelques
exemples simples de groupes, on pourra montrer que l’ensemble des mouvements du rubik’s cube
forment un groupe R muni de l’opération ≪ suivi de... ≫. L’objectif de ce sujet est de réussir à suivre
le plus loin possible le raisonnement suivant (qui est détaillé ici : http://trucsmaths.free.fr/
rubik_groupe.htm#gen)

1. Un mouvement du rubik’s cube induit une permutation des cubes sommets et de la même
façon, il induit une permutation des cubes arêtes.

2. Ces ensembles sont de cardinal 8 et 12 respectivement et on peut alors construire unmorphisme
de groupes

res : R → S8 ×S12

3. L’image de ce morphisme est l’ensemble

Im(res) = {(σ, σ′) ∈ S8 ×S12 | sgn(σ) = sgn(σ′)}

4. En fixant maintenant les orientations des arêtes et des sommets (que l’on peut coder respecti-
vement par {0, 1} et {0, 1, 2} pour chacun d’eux), on s’intéresse aux éléments de G qui laissent
toutes les pièces invariantes et qui modifie l’orientation. Autrement dit, il s’agit de calculer le
noyau du morphisme res.

5. Finalement, on peut montrer que

R ≃ Im(res)⋊ ker(res).

2.10 Parcours eulériens de graphes — Pablo Jiménez

On cherche à dessiner une une forme comme celle-ci sans lever le crayon du papier, et sans passer
deux fois par la même arête. Arrivez-vous à le faire sur le dessin de gauche ? Et celui de droite ?
On appelle un tel chemin un parcours eulérien du graphe G en question. En étudiant le nombre
d’arêtes qui sortent de chaque sommet, ce qu’on appelle le degré du sommet, trouvez une façon de
différencier les graphes qui admettent un parcours eulérien de ceux qui n’en ont pas.

http://trucsmaths.free.fr/rubik_groupe.htm#gen
http://trucsmaths.free.fr/rubik_groupe.htm#gen


2.11 Le jeu de Marienbad — Pablo Jiménez

Le jeu de Marienbad se joue à deux : des allumettes sont disposées en quatre rangs de 1, 3, 5
et 7. Chaque joueur prend alors à son tour le nombre d’allumettes qu’il souhaite dans une seule
rangée. Le gagnant est celui qui prend la dernière allumette.

A A

B

Etc...

L’un des deux joueurs a-t-il une stratégie gagnante ? Et si on modifie les règles ?

2.12 Collection de cartes — Maxime Egea

Le jeune Sacha cherche à compléter sa collection de 151 cartes. Chaque paquet de 4 cartes
coûte 1 euro et chaque carte a la même probabilité d’être obtenue. En moyenne, Sacha se demande
combien va coûter l’obtention de la collection complète ? Pour répondre au problème, on propose
de le modéliser comme suit : Xn est le nombre de cartes différentes obtenues après avoir acheté n
cartes.

Questions

1. Expliquer pourquoi (Xn)n∈N est une châıne de Markov. Décrire l’espace d’état et sa matrice
de transition. On rappelle que la matrice de transition P = (pij) d’une châıne de Markov est
définie par :

pij = P(X1 = j | X0 = i).

2. On note Tk le nombre d’achats nécessaires pour obtenir une nouvelle carte lorsque l’on possède
déjà k cartes différentes. Quelle est la loi de Tk ?

3. Que vaut l’espérance de Tk ? En déduire le nombre moyen d’achat nécessaire compléter la
correction.

4. Donner une estimation du coût moyen total pour compléter la collection.

Indication : On pourra utiliser la formule :

n∑
k=1

1

k
= ln(n) + γ +

1

2n
+ o

(
1

n

)
,

où γ ≈ 0.58 est la constante d’Euler.
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Motivations
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Cadre Mathématique

Notations

On définit

• Un espace probabilisé (Ω,F ,P).
• Un espace d’états E. Pour cette présentation, E = {1, 2, . . . ,M}

est fini.

• Une suite de variables aléatoires Xn : Ω 7→ E où n représente
l’évolution dans le temps.

• Quand E est fini, on décrira la loi d’une v.a X avec un vecteur ligne
X ∼ (P(X = 1), . . . ,P(X = M)).

Exemple : le modèle de la météo

Ω =
{

, ,
}

et E = {1, 2, 3}.
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Châıne de Markov

Définition

Soit (Xn)n≥0 une suite de variables aléatoires prenant leurs valeurs dans un
espace d’états E . On dit que (Xn)n≥0 est une châıne de Markov si elle
vérifie la propriété de Markov, c’est-à-dire :

P(Xn+1 =j | Xn = xn,Xn−1 = xn−1, . . . ,X0 = i)

= P(Xn+1 = j | Xn = i),

pour tout n ≥ 0 et pour tout (i , j , x1, . . . , xn) ∈ En+2.

La châıne est dite homogène si ses probabilités de transition ne
dépendent pas de n :

pij := P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i),

pour tout i , j ∈ E et n ∈ N.
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Matrice de transition

Définition

Dans le cas d’une châıne de Markov homogène, on peut définir sa matrice
de transition P :

P := (pij)1≤i ,j≤n.

Par exemple :

0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4
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Équation de Chapman-Kolmogorov

Pour i , k ∈ E on définit

p
(n)
ik := P(Xn = k | X0 = i),

on note P(n) la matrice de transition en n étapes.

Théorème (équation de Chapman-Kolmogorov)

Soit (Xn)n≥0 une châıne de Markov sur un espace d’états E avec matrice
de transition P, alors on a

P(n) = Pn.

La matrice de transition en n étapes est égale à la puissance n-ième de la
matrice de transition.

Cela nous permet de décrire la loi de Xn matriciellement.
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Loi de X2 dans le modèle de météo

Avec la formule des probabilités totales, on a

P(X1 = j) =
∑
i∈E

P(X1 = j | X0 = i)︸ ︷︷ ︸
=pij

P(X0 = i).

Donc, si on note µ le vecteur ligne de la loi de X0, on a X1 ∼ µP.
Par exemple, si µ = (1, 0, 0) alors d’après l’équation de
Chapman-Kolmogorov

X2 ∼ (1, 0, 0)×


0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4

×


0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4

 .
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Loi de X2 dans le modèle de météo

Avec la formule des probabilités totales, on a

P(X1 = j) =
∑
i∈E

P(X1 = j | X0 = i)︸ ︷︷ ︸
=pij

P(X0 = i).

Donc, si on note µ le vecteur ligne de la loi de X0, on a X1 ∼ µP.
Par exemple, si µ = (1, 0, 0) alors d’après l’équation de
Chapman-Kolmogorov

X2 ∼ (1, 0, 0)×


2
5

2
5

1
5

1
25

11
25

7
25

6
25

2
5

9
25

 =

(
2

5
,
2

5
,
1

5

)
.
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Classification des états

Définition

• On dit qu’un état i ∈ E communique avec j s’il existe n tel que
P(Xn = j | X0 = i) > 0

• Il est transitoire si la probabilité d’y revenir en temps fini est
strictement inférieure à 1 et récurrent sinon.

• Un état i ∈ E est périodique s’il existe un entier d > 1 tel que les
retours à i se font uniquement aux multiples de d.

Une châıne est dite irréductible si tous les états communiquent entre eux.

Dans l’exemple de la météo,
la châıne de Markov est
irréductible.
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loi stationnaire

Définition

Une loi stationnaire π est un vecteur ligne à M coordonnées dont la
somme des coefficients vaut 1 et telle que

πP = π.

Cela signifie que si π est la loi initiale alors, la châıne gardera la même loi
à chaque instant.

Proposition

Si la châıne de Markov est irréductible alors il y a existence et unicité de
la loi stationnaire.
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Temps moyen passé à chaque état

Théorème (Ergodique)

Soit (Xn)n≥0 une châıne de Markov irréductible de loi stationnaire π. Pour
toute fonction f : E → R , on a la convergence suivante :

1

n

n∑
k=1

f (Xk)
n→∞−−−→

∑
i∈E

f (i)πi .

En particulier, si f est l’indicatrice de l’état j :

f (x) =

 1 si x = j ,

0 sinon.

Le théorème décrit le temps moyen passé à l’état j .
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loi stationnaire pour la météo

La châıne est irréductible donc
il existe une unique loi station-
naire. Il n’y a plus qu’à résoudre
le système

π


0.5 0.5 0

0.3 0.3 0.4

0.1 0.5 0.4

 = π,

on trouve π =
(
11
36

5
12

5
18

)
.

Le théorème ergodique nous permet d’affirmer que, sur un temps long, il
fera du soleil 11 jours sur 36 en moyenne.
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Espace d’états E fini - Résumé

• À partir d’une dynamique d’évolution, on sait construire la matrice
de transition de la châıne.

• Grâce à l’équation de Chapman-Kolmogorov, on sait décrire la loi
de la châıne à tout instants n.

• On sait classifier les états : transitoire ou récurrent.

• Quand la châıne est irréductible, on a vu un résultat de convergence
ergodique vers la loi stationnaire. Sous des hypothèses plus fortes, il
y a aussi convergence en loi de la châıne vers la loi stationnaire.

Quid de E infini ?
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Châınes de Markov en espace d’états infini

• La matrice de transition devient un opérateur, il y a aussi une
équation de Chapman-Kolmogorov

• L’irréductibilité de la châıne n’implique plus nécessairement
l’existence d’une loi stationnaire.

• Il faut en plus que la chaine soit récurrente positive pour avoir
existence et unicité.

• Dans le cas d’une châıne irréductible et récurrente positive il y a
convergence en loi de la chaine et un théorème ergodique.
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Le voyageur perdu - Marche aléatoire en 2-dimension

Définition

• Xn ∈ Z2 est la position du
voyageur à l’instant n, à chaque
instant il avance au hasard dans
l’une des 4 directions.
• On suppose qu’il a commencé
sa marche X0 = (0, 0), là ou se
trouve son logement.

A t’il une chance de rentrer en temps fini ?
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Le voyageur perdu - Marche aléatoire en 2-dimension

Proposition

Une marche aléatoire (Xn)n≥0 dans Zd est récurrente si et seulement si

+∞∑
i=1

P(Xi = 0) = +∞.

• On peut montrer que P(X2n = 0) ≃ 1
πn et donc (Xn)n≥0 est

récurrente i.e elle revient à l’origine une infinité de fois (p.s).

• En revanche, elle n’est pas récurrente positive et elle n’a pas de
loi stationnaire.

Remarque

En 3-dimension, on a P(X2n = 0) ≃ 1
(2πn)3/2

donc la châıne n’est pas

récurrente. Cela signifie qu’un pigeon ayant perdu tout sens d’orientation
a des chances de ne jamais rentrer au nid !
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Merci pour votre attention !
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Résultant et discriminant
démêler les racines du problème

François Bernard

Pi-Day

14 mars 2024

François Bernard Résultant et discriminant 14 mars 2024 1 / 17



Introduction

→ Un polynôme est une expression de la forme

P(X ) = anX
n + an−1X

n−1 + · · ·+ a0

où X est une indéterminée et les ai ∈ C sont appelés coefficients de P.

→ Un nombre α ∈ C est appelé racine de P si P(α) = 0.

Exemple

Le nombre d’or 1+
√

5
2 est une racine du polynôme X 2 − X − 1.

Le coeur de la géométrie algébrique consiste à étudier les racines communes de
plusieurs polynômes à plusieurs variables.
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où X est une indéterminée et les ai ∈ C sont appelés coefficients de P.

→ Un nombre α ∈ C est appelé racine de P si P(α) = 0.

Exemple

Le nombre d’or 1+
√
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Résultant

Soient
P(X ) = anX

n + an−1X
n−1 + · · ·+ a0

et Q(X ) = bmX
m + bm−1X

m−1 + · · ·+ b0

On veut savoir si le système{
anx

n + an−1x
n−1 + · · ·+ a0 = 0

bmx
m + bm−1x

m−1 + · · ·+ b0 = 0

admet une solution.

→ On considère ResX (P,Q) ∈ C le résultant de P et Q.

Proposition
ResX (P,Q) = 0 si et seulement si ∃α ∈ C tel que P(α) = Q(α) = 0.
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Calcul du résultant

Considérons la matrice de Sylvester de taille (m + n)× (m + n)

an 0 · · · 0 bm 0 · · · 0

an−1 an
. . .

...
... bm

. . .
...

... an−1
. . . 0

...
. . . 0

...
...

. . . an b1 bm

a0 an−1 b0
. . .

...
...

0
. . .

... 0
. . . b1

...
...

. . . a0
...

...
. . . b0 b1

0 · · · 0 a0 0 · · · 0 b0


→ Le résultant est donné par le déterminant de cette matrice.
→ On effectue un pivot de Gauss, puis on multiplie les éléments sur la diagonale.
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Exemple

On veut savoir si le système {
x5 + 2x3 + 4 = 0
x4 + x + 7 = 0

admet une solution.

On calcule∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
2 0 1 0 0 0 1 0 0
0 2 0 1 1 0 0 1 0
0 0 2 0 7 1 0 0 1
4 0 0 2 0 7 1 0 0
0 4 0 0 0 0 7 1 0
0 0 4 0 0 0 0 7 1
0 0 0 4 0 0 0 0 7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Exemple
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admet une solution.
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1 0 0 0 1 0 0 0 0
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 −2 0 1 0 0
0 0 0 1 1 −2 0 1 0
0 0 0 0 11 1 −2 0 1
0 0 0 0 0 127

11
−1
11 −2 6

11
0 0 0 0 0 0 885

127
39
127

24
127

0 0 0 0 0 0 0 2061
295

111
295

0 0 0 0 0 0 0 0 1631
229

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Formule de Héron

Soit ABC un triangle non plat du plan. On désire exprimer son aire A en fonction
des longueurs a = BC , b = AC et c = AB de ses côtés.

A

B

C

c a

b

Théorème (Formule de Héron)
En notant p = 1

2 (a+ b + c) le demi-périmètre de ABC , on a

A =
√

p(p − a)(p − b)(p − c).
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Formule de Héron

A(0, 0)

B(x , y)

C (b, 0)

c a

b
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Formule de Héron

A(0, 0)

B(x , y)

C (b, 0)

c a

b

x

y

→ La formule de l’Aire nous donne A− 1
2by = 0.

→ Le théorème de Pythagore nous donne{
x2 + y2 − c2 = 0
(b − x)2 + y2 − a2 = 0
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Formule de Héron

On pose
P(X ) = X 2 + y2 − c2

et Q(X ) = (b − X )2 + y2 − a2

→ On sait que x est une racine commune à P et Q.

On a donc

ResX (P,Q) =

∣∣∣∣∣∣∣∣
1 0 1 0
0 1 −2b 1

y2 − c2 0 b2 + y2 − a2 −2b
0 y2 − c2 0 b2 + y2 − a2

∣∣∣∣∣∣∣∣
= 4b2y2 + a4 − 2a2b2 − 2a2c2 + b4 − 2b2c2 + c4

= 0
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Formule de Héron
On pose

W (Y ) = 4b2Y 2 + a4 − 2a2b2 − 2a2c2 + b4 − 2b2c2 + c4

et V (Y ) = − 1
2bY +A

→ On sait que y est une racine commune à W et V .

On a donc

ResY (W ,V ) = 1
4b

4(16A2 − (a+ b + c)(a+ b − c)(a− b + c)(−a+ b + c))

= 1
4b

4(16A2 − 2p × 2(p − c)× 2(p − b)× 2(p − a))

= 8b4(A2 − p(p − c)(p − b)(p − a))

= 0

Au final
A =

√
p(p − a)(p − b)(p − c)
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Intersection de surfaces

Le résultant permet d’éliminer une variable quand deux figures géométriques
s’intersectent.

Figure –
En rouge P(x , y , z) = y2 + x2 − z3 = 0
En jaune Q(x , y , z) = y + x2 + z2 = 0

Ici, par exemple, ResY (P,Q) = (x2 + z2)2 − z3 − x2 = 0 sur l’intersection.
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Discriminant

Théorème (fondamental de l’algèbre)
Soit P(X ) = anX

n + an−1X
n−1 + · · ·+ a0 avec ai ∈ C. Alors il existe

α1, . . . , αn ∈ C tels que

P(X ) = an(X − α1) . . . (X − αn)

→ On cherche à savoir si les racines sont distinctes.

Définition
On considère le polynôme dérivé

P ′(X ) = nanX
n−1 + (n − 1)an−1X

n−2 + · · ·+ a1

Remarque :

(u1u2u3)
′ = u′1(u2u3) + u1(u2u3)

′

= u′1u2u3 + u1(u
′
2u3 + u2u

′
3)

= u′1u2u3 + u1u
′
2u3 + u1u2u

′
3
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Discriminant

Si P(X ) = (X − α1)(X − α2)(X − α3), alors

P ′(X ) = (X − α2)(X − α3) + (X − α1)(X − α3) + (X − α1)(X − α2)

Ainsi, par exemple, P ′(α1) = (α1 − α2)(α1 − α3)

De manière générale :

P ′(αi ) = 0 si et seulement si ∃j tel que αi = αj .

Proposition
Les propriétés suivantes sont équivalentes :

Les racines de P sont distinctes.
P et P ′ n’ont pas de racines communes.
ResX (P,P ′) ̸= 0.

→ On note Disc(P) = (−1)
n(n−1)

2

an
ResX (P,P ′) le discriminant de P.
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Exemple en degré 2

Pour P(X ) = aX 2 + bX + c , on a P ′(X ) = 2aX + b.

ResX (P,P ′) =

∣∣∣∣∣∣
a 2a 0
b b 2a
c 0 b

∣∣∣∣∣∣
On effectue le pivot de Gauss et on obtient

ResX (P,P ′) =

∣∣∣∣∣∣
a 2a 0
0 −b 2a
0 0 b − 4ac

b

∣∣∣∣∣∣ = a× (−b)× (b − 4ac
b

) = −a(b2 − 4ac)

Donc P admet une racine double si et seulement si b2 − 4ac = 0.
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Exemples en degré 3 et 4

Pour P(X ) = aX 3 + bX 2 + cX + d , on a

Disc(P) = b2c2 + 18abcd − 27a2d2 − 4ac3 − 4b3d

Pour P(X ) = aX 4 + bX 3 + cX 2 + dX + e, on a

Disc(P) = 256a3e3 − 128a2e2c2 − 4b3d3 + 16ac4e − 4ac3d2 − 192a2bde2 −
27b4e2 − 6ab2d2e+144ab2ce2 + 144a2cd2e − 80abc2de + 18b3cde + 18abcd3 +
b2c2d2 − 4b2c3e − 27a2d4

François Bernard Résultant et discriminant 14 mars 2024 16 / 17



Exemples en degré 3 et 4

Pour P(X ) = aX 3 + bX 2 + cX + d , on a

Disc(P) = b2c2 + 18abcd − 27a2d2 − 4ac3 − 4b3d

Pour P(X ) = aX 4 + bX 3 + cX 2 + dX + e, on a

Disc(P) = 256a3e3 − 128a2e2c2 − 4b3d3 + 16ac4e − 4ac3d2 − 192a2bde2 −
27b4e2 − 6ab2d2e+144ab2ce2 + 144a2cd2e − 80abc2de + 18b3cde + 18abcd3 +
b2c2d2 − 4b2c3e − 27a2d4

François Bernard Résultant et discriminant 14 mars 2024 16 / 17



Cas particulier en degré 4
Pour P(X ) = X 4 + aX 2 + bX + c , on a

Disc(P) = 16c(16c2 − 8ca2 + a4 + 9ab2)− b2(4a3 + 27b2)

Figure – La surface Disc(P) = 0

Merci pour votre attention !
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Les nœuds en mathématiques

Nœud : Trajectoire d’une ficelle dans l’espace, dont on recolle
ensuite les bouts.

On veut classer les nœuds, à déformation de la ficelle près, en
gardant les bouts joints.

Dessins de nœuds

= ̸=

Nœud trivial Nœud de trèfle
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Table de classification des nœuds

... et bien d’autres encore !
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L’origine physico-chimique de la théorie des nœuds

Source : Wikipedia - Vortex theory of the atom

Fin 19e siècle: Lord Kelvin propose l’idée que les atomes sont des
tourbillons dans un fluide qui remplit tout l’univers (l’éther).

→ Pour classifier les atomes, il suffit donc de classifier les nœuds!

→ Tait et Little commencent à classifier les nœuds, jusqu’à 10
croisements.
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L’origine physico-chimique de la théorie des nœuds

Source : Wikipedia - Vortex theory of the atom

Fin 19e siècle: Lord Kelvin propose l’idée que les atomes sont des
tourbillons dans un fluide qui remplit tout l’univers (l’éther).

→ Pour classifier les atomes, il suffit donc de classifier les nœuds!

→ Tait et Little commencent à classifier les nœuds, jusqu’à 10
croisements.

Michelson-Morley 1887 prouvent que... L’éther n’existe pas !

Pas grave ! Les mathématiciens ont pris le relais entretemps, et
la théorie des nœuds est lancée.
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Défi n°1 : Mon nœud en 5 secondes

En 5 secondes, feras-tu un de ces nœuds, ou un pas dans la table?
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Reconnâıtre un nœud avec l’ordinateur

https://joshuahhh.com/projects/kit/
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Les règles du tricoloriage

Un dessin de nœud est fait de traits et de croisements.

On choisit trois couleurs (par exemple Rouge, Vert, Bleu).

Tricoloriage d’un dessin de nœud = Coloriage des traits tel que:

AUTORISÉ : une ou trois couleurs à un croisement

INTERDIT : deux couleurs à un croisement
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Les invariants de nœuds

Invariant de nœud = objet mathématique associé à un nœud,
inchangé si on bouge la ficelle ou on prend un autre dessin!

Contre-Exemple : Le nombre de croisements d’un dessin n’est
PAS un invariant (on peut rajouter des boucles à un nœud !)

=

Exemple : Le minimum du nombre de croisements parmi tous
les dessins... c’est un invariant !

Exemple : Le nombre de tricoloriages d’un quelconque dessin
du nœud est un invariant du nœud! (pas évident, admis ici)
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inchangé si on bouge la ficelle ou on prend un autre dessin!

Contre-Exemple : Le nombre de croisements d’un dessin n’est
PAS un invariant (on peut rajouter des boucles à un nœud !)
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Distinguer les nœuds par le nombre de tricoloriages

Un invariant permet de différencier deux nœuds.

= =

Nœud trivial : 3 tricoloriages possibles.

Nœud de trèfle : 9 tricoloriages possibles.

→ Ce sont deux nœuds différents!
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Nœud de trèfle : 9 tricoloriages possibles.

→ Ce sont deux nœuds différents!
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Nœud de trèfle : 9 tricoloriages possibles.

→ Ce sont deux nœuds différents!
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Knotinfo : une base de données d’invariants de nœuds

https://knotinfo.math.indiana.edu/

Ma recherche : étudier et calculer divers invariants de nœuds.
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Plus d’un siècle de théorie des nœuds

Née de la Physique (XIXe siècle), pour classifier les atomes.

Développée en Mathématiques (XXe −XXIe siècles).

Appliquée en Biologie (années 1990) pour étudier l’ADN.

Des nœuds dans l’ADN empêchent la division cellulaire.
→ Recherche de traitements contre les cancers.
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Merci de votre attention !

Avez-vous des questions ?

(Bonus : prouvez que c’est un dessin du nœud trivial !)
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2.6 Dérivée de Caputo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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1 Introduction

1.1 Modélisation (mathématique)

Nous partons d’un modèle physique, chimique, biologique, (financier), . . . et essayons de le

représenter sous forme d’expressions (équations) mathématiques.

Exemples

Désintégration d’un élément radioactif.

• Modèle physique : (assez résumé) Un atome quelconque d’un élément radioactif a autant de

chances de se désintégrer à un moment donné qu’un autre de la même espèce, le nombre de

désintégrations à un instant donné est proportionnel au nombre N d’atomes de même

espèce présents.

• Modèle mathématique : soit N(t) le nombre (ou, plutôt, la fraction rel ative) d’atomes

radioactifs de notre échantillon, nous avons N ′(t) = −λN(t), λ ∈ R
+.

Nous savons résoudre : N(t) = N(0)e−λt.

Deuxième loi de Newton

• Modèle physique (énoncé archäıque) : “Les changements qui arrivent dans le mouvement
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sont proportionnels à la force motrice ; et se font dans la ligne droite dans laquelle cette

force a été imprimée.”

• Modèle mathématique : ~x ′(t) = ~v, m~v ′ = ~F . En résumé, m~a = ~F .

Parfois la présentation est trompeuse :

(Faux) modèle d’écologie de Leonardo Pisano (Fibonacci)

• Modèle écologique : “Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de

toutes parts, pour savoir combien de couples seraient issus de cette paire en une année, car

il est dans leur nature de générer un autre couple en un seul mois, et qu’ils enfantent dans

le second mois après leur naissance.” (et tous restent en vie, sinon...)

• (Vrai) modèle mathématique: obtenir la valeur de N12, sachant que Nn = Nn−1 +Nn−2 et

que N0 = N1 = 1.

Le but : construire un modèle (que ce soit physique, etc, puis mathématique) qui représente

l’essentiel du système étudié.

Constructions : de bas en haut (bottom-up), à partir de principes premiers (axiomes) ; de haut

en bas (top-bottom) à partir d’un modèle connu que l’on essaye d’ajuster.

Limitations et risques : le problème de la vache sphérique ou de l’ensemble vide, le problème du

modèle trop beau.
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1.2 Un cas bien réussi : les systèmes dynamiques

Ce sont des modèles mathématiques que l’on retrouve dans de nombreuses formulations pour

représenter l’évolution d’un système avec le temps. Ce temps peut correspondre à une variable

réelle (temps continu) o naturelle (temps discret). De nombreux systèmes sont modélisés de

manière satisfaisante, par exemple en physique, la mécanique (classique ou quantique), la

gravitation, la thérmodinamique, . . .

1.2.1 Formulation (temps continu, nombre fini de variables)

Nous avons vu :







~x ′ = v,

~v ′ = (1/m)~F ,
en général t ∈ R, ~x, ~f ∈ R

n, ~x ′ = ~f(~x, t) ⇔































x′

1 = f1(~x, t),

x′

2 = f2(~x, t),
...

x′

n = fn(~x, t).

• Les composantes de ~x correspondent aux différentes variables nécessaires à charactériser

l’état du système de façon unique. Par exemple pour un mobile classique, les trois

composantes de la position, les trois composantes de la vitesse.

• On distingue entre les systèmes non-autonomes et autonomes selon si ~f dépend ou non

explicitement du temps.
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• Tout système non-autonome peut se transformer en un autonome, en rajoutant une

variable, xn+1 qui aurait pour dérivée 1 pour tout temps. Mais (ça ne conduit à rien, ou

presque, et) en pratique l’analyse de ces systèmes se fait avec des outils différents.

• En principe on voudra résoudre les équations à partir d’une donnée initiale: ~x(t0) = ~x0

(problème de Cauchy) dans l’espace de configuration R
n × R, et obtenir la trajectoire dans

l’espace des phases Rn. En général on n’y arrive pas, mais . . .

• Au moins on peut assurer l’existence et l’unicité de la solution à partir de la donnée initiale,

dans un certain intervalle de temps, si le problème de Cauchy est bien posé : fi(~x, t) sont

continues en t et “lipschitziennes” en ~x. (Dans tout intervalle borné la distance entre deux

valeurs de la fonction est majorée par la distance entre les valeurs de la variable fois une

constante : l’existence de la dérivée n’est pas assurée mais tous les taux d’accroissements

sont bornés para la constante ∀s1, s2, |h(s1)− h(s2)| ≤ k|s1 − s2|.)

• Pour les systèmes autonomes l’analyse se fait principalement autour des solutions

constantes (points critiques) qui n’existent pas pour les systèmes non-autonomes.
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1.2.2 Étude des points critiques pour un système autonome

Pour chaque point critique on cherche a établir sa stabilité : quel est le comportement au

voisinage de ce point ?

• Développements limités de chaque fi centrés sur le point critique ~x0. Sous forme générale :

~x ′(t) = ~f(~x0) +M(~x− ~x0) + o(1) = M(~x− ~x0) + o(1),

M une matrice n× n constante.

• On résout le système linéaire associé : ~y ′ = M~y. [~y(t) = eMt~y0 !!]

• Importance des vecteurs propres.

• Importance des valeurs propres.

Parenthèse (
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Définition : étant donné une matrice carrée M on appelle vecteur propre ~v associé a la valeur

(scalaire) propre λ à tout vecteur non-nul (porquoi non-nul ?) tel que M~v = λ~v.

• Il n’existe pas de vecteur propre sans valeur propre, et vice-versa.

• Les directions correspondantes aux vecteurs propres sont vraiment spéciales.

• Tout vecteur propre nous donne une solution particulière de l’équation différentielle

~y(t) = a(t)~v =⇒ ~y ′(t) = a′(t)~v, M~y = λa(t)~v

et l’équation ~y ′ = M~y n’est plus vectorielle mais scalaire : a′(t) = λa(t).

• Mais . . .λ peut être “compliqué” : les valeurs propres sont les racines d’un certain

polynome associé a la matrice. En général λ ∈ C (!!!)

Pour ne pas ouvrir une deuxième parenthèse disont que la forme générale de a(t) est

eαt[c1 cos(βt) + c2 sin(βt)], c1, c2 constantes.

On appelle α la partie réelle de λ et β sa partie imaginaire :

• si α > 0, a(t) n’est pas borné quand t tends vers +∞,

• si α < 0, a(t) tends vers zéro quand t tends vers +∞,

• si α = 0, (et β 6= 0) a(t) est une fonction périodique de t.
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Parenthèse )

En conclusion, pour un point critique donné

• Si toutes les valeurs propres ont une partie réelle strictement négative, au voisinage du

point critique les solutions vont tendre vers celui-ci avec le temps. [point asymptotiquement

stable]

• Si il a au moins une valeur propre à partie rélle strictement positive, au voisinage du point

critique des solutions vont s’éloigner. [point instable]

• Dans toute autre situation on ne peut pas conclure sur la stabilité du point à partir de

l’approximation linéaire et une étude plus approfondie est nécéssaire.

Tout cela n’ait des travaux de Poincaréa et continue de nos jours avec multitude de questions

ouvertes, ne serait-ce qu’en relation avec la théorie du chaos (l’effet papillon).

aMémoire sur les courbes définies par une équation différentielle (I), H. Poincaré, Journal de Mathématiques

Pures et Appliquées Volume 7, pages 375–422, (1881) ; Mémoire sur les courbes définies par une équation

différentielle (II), H. Poincaré, Journal de Mathématiques Pures et Appliquées Volume 8, pages 251–296(1882)

; Sur les courbes définies par les équations différentielles (III), H. Poincaré, Journal de Mathématiques Pures et

Appliquées Volume 1, pages 167–244 (1885).
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2 Outils mathématiques

2.1 Motivation d’une “formulation fractionnaire”

Les systèmes complexes (verre, cristaux liquides, polymères, protéines, les êtres vivants, les

écosystèmes - humains inclus - etc.) se charactérisent par posséder un gran nombre d’éléments

qui interagissent entre eux. On y trouve, aussi, de multiples échelles et des phénomènes de

mémoire. Les matériaux viscoélastiques en sont un exemple.

Comme alternative aux modèles avec des dérivées “classiques”, on considère depuis déjà un bon

nombre d’années des modèles, dits “fractionnaires”, ayant des dérivées d’ordre non-entier.

2.2 Quelques détails historiques

Le 28 février 1695 a, Leibniz écrit une lettre à (Johann) Bernoulli en réponse à un

developpement en série (de “Taylor”)b proposé par Bernoulli pour la primitive d’une fonction.

Leibniz, qui était apparemment malade, fait une erreur qui comprends des dérivées d’ordre

négatif dans ces developpements.
aS. Dugowson, Les différentielles métaphysiques: histoire et philosophie de la généralisation de l’ordre de

dérivation, Ph.D. Dissertation, Université Paris Nord, 1994.
bÀ ce moment Taylor est agé de moins de dix ans. . .
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Une correspondence s’ensuit où tous deux discutent de différent détails. De L’Hôpital se joint à

eux et c’est dans une lettre qu’il reçoit de Leibniz, du 30 september 1695, où celui-ci introduit

des dérivées d’ordre non-entierc toujours dans le cadre des développements en série. Leibniz

finit par remarquer sur la possible interprétation : “comme toute paradoxe, celle-ci peut fournir

des résultats intéressants dans un futur.”

Si bien différents auteurs, tels que Euler en 1730, Lagrange en 1754 ou Fourier en 1822, se sont

penchés sur le sujet, il faut attendre qu’Abel, en 1823, l’utilise pour résoudre le problème de

l’intégrale tautochrone, pour que quelqu’un propose une formulation générale, ce que fait

Liouille en 1832.

À partir de ce moment une formulation por des intégrales d’ordre non-entier est bâtie avec des

contributions (entre autres) de Riemann, Laurent, Hadamard, Heaviside, Sonin, Grünwald,

Letnikov, etc., uses preferably the so called fractional integrals, because of their properties. À

partir de ces intégrales des dérivées d’ordres non-entiers sont définies.

De nos jours ce sont, dans beaucoup de cas, des applications d’ingénierie qui ont fait crôıtre

l’intéret, suivi de l’analyse mathématique de leurs propriétés. On trouve maintenant plusieurs

définitions que l’on applique, par exemple, en hydrodynamique pour décrire des fluides

viscoélastiques, ou dans des processus de diffusion anormale, ou de contrôle de modèles avec

mémoire, etc.

cplus exactement, des différentielles d’ordre non-entier
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2.3 Fonction Gamma de Euler et fonctions de Mittag-Leffler

La fonction gamma (majuscule) de Euler, Γ (notation, par contre, due à Legendre), peut être

considérée comme une généralisation de la factorielle. Elle est définie pour z ∈ R
+ d par :

Γ(z) :=

∫

∞

0

sz−1e−sds,

et satisfait, entre autres les propriétés :

Γ(1) = 1, Γ(z + 1) = zΓ(z),

d’où l’on déduit

Γ(n+ 1) = n!, n ∈ N.

dEn général z ∈ C avec Re(z) > 0 mais, bon, restons réels.
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Figure 1: Représentations de la fonction Γ de Euler, pour des valeurs positives, et de la factorielle
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De son côté, les fonctions de Mittag-Leffler généralisent la fonction exponentielle. Elles sont

définies par :

Eα(x) =

∞
∑

k=0

xk

Γ(αk + 1)
, (α > 0), E1(x) = ex,

Eα,β(x) =

∞
∑

k=0

xk

Γ(αk + β)
, (α, β > 0), Eα,1 = Eα,

El
α,β(x) =

∞
∑

k=0

(k + l)!

l!Γ(αk + β)

xk

k!
, (α, β > 0; l ∈ N), E0

α,β = Eα,β .

Ces exponentielles généralisées, avec des arguments négatifs, Eα(−kt), k > 0, ont un

comportement semblable à celui de l’exponentielle pour 0 < α < 1, mais pour 1 < α < 2 elles

présentent des oscillations amorties.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 2 Introduction : systèmes dynamiques 14/38
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Figure 2: Eα(−t) por quelques valeurs de α, avec α ∈ (0, 1) ou α ∈ (1, 2).
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2.4 Intégrales fractionnaires

Il est possible d’imaginer une dérivée d’ordre non-entier à partir des transfomées de Fourier ou

de Laplace :

• Si F(f (n))(x) = (2πiκ)nF(f)(κ), à quoi correspond F−1
(

(2πiκ)αF(f)(κ)
)

, quand α 6∈ N?

• Si L
(

f (n)(x)
)

= pn(Lf)(p)−
n
∑

k=1

pn−kf (k−1)(0), à quoi correspond L−1
(

pα(Lf)(p)
)

, α 6∈ N?

Cependant on part d’une autre aproche, en généralisant un idée bien différente.

Formule de l’intégrale itérée de Cauchy

De la même façon que l’on peut penser à des dérivées succesives pour une fonction :

f(x), Df(x) = f ′(x), D2f(x) = f ′′(x), . . . , Dnf(x) = f (n)(x),

on peut envisager itérer l’intégration :

If(x) =
∫ x

a

f(t) dt, I2f(x) =

∫ x

a

dx1

∫ x1

a

f(t) dt, I3f(x) =

∫ x

a

dx1

∫ x1

a

dx2

∫ x3

a

f(t) dt, . . .
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La formule de Cauchy représente l’iteration d’n intégrations succéssives avec unique integrale

convolutiona :

Inf(x) =

∫ x

a

dx1

∫ x1

a

dx2 . . .

∫ xn−1

a

f(t) dt =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt.

Étant donnée la généralisation de la factorielle, l’intégrale fractionnaire de Riemann-Liouville

d’ordre α > 0 est définie commeb :

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt, x ∈]a, b[.

Ce sont des opérateurs non locaux ayant les suivantes propriétés :

• Les intégrales son bien définies si f ∈ L1[a, b].

• Quand α ∈ N on retrouve le cas “classique”.

• Loi des indices (demi-groupe) : soient f ∈ L1[a, b] et α, β > 0, alors, p.p. en ]a, b[,

(Iαa+I
β
a+f)(x) = (Iα+β

a+ f)(x).

aJe vous invite à le démontrer (par récurrence sur n).
bA.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations,

Elsevier, Amsterdam 2006.
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• L’intégrale d’une puissance est une puissance : soient β > 0 et α > 0, alors

Iαa+(x− a)β−1 =
Γ(β)

Γ(β + α)
(x− a)β+α−1, p.p.

2.5 Dérivée de Riemann-Liouville

On la définie comme :

(Dα
a+f)(x) :=

(

DnIn−α
a+ f

)

(x) =
1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1f(t)dt,

avec n tel que n− 1 < α ≤ n, n ∈ N (notation: n = ⌈α⌉) et où D représente la dérivée usuelle.

Si α = n ∈ N, on retrouve l’expression usuelle qui correspond. Mais en général la dérivée

correspond à un operateur non local.

Quelques propriétés

• La dérivée est bien définie pour des fonctions f ∈ ACn[a, b] : Cn−1[a, b], f (n−1) ∈ AC[a, b].

continue ⊃ lipschitzienne ⊃ Absolument Continue ⊃ dérivable.

• Limites aux ordres naturels :

lim
α→n

(Dα
a+f)(x) = f (n)(x).
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• Dérivée d’une puissance : soient β > 0 et α > 0, alors

Dα
a+(x− a)β−1 =

Γ(β)

Γ(β − α)
(x− a)β−α−1.

• Dérivée d’une constante : soit 0 < α < 1, alors

Dα
a+1 =

(x− a)−α

Γ(1− α)
.

Par ailleurs :

Dα
a+y(x) = 0 ⇐⇒ y(x) =

n
∑

j=1

cj(x− a)α−j ,

avec cj , dj des constantes arbitraires.

• Loies des indices : soient f ∈ L1[a, b], α, β > 0, alors p.p.

⋆ (Dα
a+D

β
a+f)(x) = (Dα+β

a+ f)(x)−
m
∑

j=1

(Dβ−j
a+ f)(a+)

(x− a)−j−α

Γ(1− j − α)
, ⌈β⌉ = m.

⋆ (Dα
a+I

α
a+f)(x) = f(x),

⋆ (Iαa+D
α
a+f)(x) = f(x)−

n
∑

j=1

f (n−j)(a)

Γ(α− j + 1)
(x− a)α−j, n = ⌈α⌉.

⋆ (Dβ
a+I

α
a+f)(x) = (Iα−β

a+ f)(x), si α ≥ β, (Dβ
a+I

α
a+f)(x) = (Dβ−α

a+ f)(x), si α ≤ β.
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• Problème de Cauchy avec une dérivée de Riemann-Liouville : la solution de

Dα
a+x(t) = f [t, x(t)], α > 0, t > a,

avec

Dα−k
a+ x(a+) = bk, bk ∈ R, k = 0, 1, . . . , n− 1, n = ⌈α⌉,

(

Dα−k
a+ x(a+) := lim

t→a+
Dα−k

a+ x(t)
)

existe et est unique avec les mêmes hypothèses que pour le cas d’ordre entier. Mais...

• les conditions sont bizarres,

• quel serait le space des phases ?

2.6 Dérivée de Caputo

Pour avoir un problème de Cauchy avec des conditions ayant des dérivées d’ordres entiers on

peut avoir recours à la dérivée de Caputo définie par :

(cDα
a+f)(x) :=

(

In−α
a+ Dnf

)

(x),=
1

Γ(n− α)

∫ x

a

(x− t)n−α−1 dnf(t)

dtn
dt,

Cela correspond a intervertir la dérivation et l’intégration dans la formule de R-L. La fonction f

est maintenant plus régulière puisque sa derivée n-ième doit exister.
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Quelques propriétés

• Relation entre les dérivées de R-L et C :

(Dα
a+f)(x) = (cDα

a+f)(x) +
n−1
∑

j=0

f (j)(a)

Γ(1 + j − α)
(x− a)j−α.

• Derivée d’une constante :

(cDα
a+1) = 0.

• Soient α > 0, ⌈α⌉ = n et k ∈ [[1, n− 1]], alors

cDα
a+(x− a)k = 0.

• Problème de Cauchy avec une dérivée de Caputo : la solution de

Dα
a+x(t) = f [t, x(t)], α > 0, t > a,

avec

Dk
a+x(a

+) = bk, bk ∈ R, k = 0, 1, . . . , n− 1, n = ⌈α⌉,
existe et est unique avec les mêmes hypothèses que pour le cas d’ordre entier.

• Fonctions (vecteurs) propres : soient α > 0, λ ∈ C,

Dα
a+Eα(λ(t− a)α) = λEα(λ(t− a)α).
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Figure 3: Fonctions propres de la dérivée de Caputo, λ = −1, Eα(−tα).
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2.7 Dérivée de Grünwald-Letnikov

C’est une aproche bien différente :

f ′(x) = lim
h→0

f(x)− f(x− h)

h
= lim

h→0

1

h

(

f(x)− f(x− h)
)

,

f ′′(x) = lim
h→0

f ′(x)− f ′(x− h)

h
lim
h→0

f(x)−f(x−h)
h − f(x−h)−f(x−2h)

h

h

= lim
h→0

1

h2

(

f(x)− 2f(x− h) + f(x− 2h)
)

,

f (3)(x) = lim
h→0

1

h3

(

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)
)

,

f (4)(x) = lim
h→0

1

h4

(

f(x)− 4f(x− h) + 6f(x− 2h)− 4f(x− 3h) + f(x− 4h)
)

,

etc.

Quels sont ces coéfficients ?
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La formule générale est bien :

f (n)(x) = lim
h→0

1

hn

n
∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

f(x− ℓh), n ∈ N.

Extension fractionnaire : étant donné que
(

n

ℓ

)

=
n!

ℓ!(n− ℓ)!

on choisi :
dα

dxα
f(x) = lim

h→0

1

hα

n
∑

ℓ=0

(−1)ℓ
Γ(α+ 1)

ℓ!Γ(α+ 1− ℓ)
f(x− ℓh), α ∈ R

+.

Le problème : n, la valeur supérieure de la somme, n’as plus aucun sens. Si on considère

x ∈ [a, b] (et b pourrait même être +∞), on peut écrire

h =
x− a

n
=⇒ n =

x− a

h
, h > 0,

et on substitue n par la partie entière de cette valeur. On défini, finalement :

dα

dxα
f(x) = lim

h→0+

1

hα

[ x−a

h ]
∑

ℓ=0

(−1)ℓ
Γ(α+ 1)

ℓ!Γ(α+ 1− ℓ)
f(x− ℓh), α ∈ R

+.

Dans la pratique, la limite en h est tronquée et une petite valeur de h (suffisamment petite) est

choisie pour obtenir une approximation.
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3 FODE models

There have been bottom-up generated models, arising from actual applications. For instance in

control or in the study of visco-elastic media [3]. There have also been top-down generated

models, trying to see what consequences can be obtained “fractionalizing” a given integer-order

ODE, with different success.

3.1 Some tools

The fractional derivatives are linear operators. This allows to preserve some interesting features

of the integer-order case (especially true in the case of the Caputo Derivative).

• “Fractional Picard Theorem”: existence and unicity of the solution for the ivp

ode:

dx

dt
= f(t, x), fode:

c

rl
Dαx = f(t, x), if f is continuous in t and Lipschitz in x. (1)

• For linear equations the superposition principle holds: linear combinations of solutions are

solutions.

• Laplace and Fourier Transform can be applied.
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• Linear, homogeneous, equations with constant coefficients have as space of solutions a

vector space spanned by the eigenfunctions of the differential operator:

ode:

d~x

dt
= M~x, fode:

cDα~x = M~x, ~x(t) =
∑

k

ckfk(t)~vk. (2)

• Similarly if we add a constant: the solution is the general solution of the homogeneous

equations plus a particular solution of the inhomogenous system:

ode:

d~x

dt
= M~x+ ~c, fode:

cDα~x = M~x+ ~c, ~x(t) = ~fp(t) +
∑

k

ckfk(t)~vk. (3)

• Linear stability analysis of hyperbolic critical points is valid (first Lyapunov method [4]):

arg ∈ [−π, π)

ode: ∀k,Re(λk) < 0 ⇐⇒ ∀k, |arg(λk)| > π/2 (4)

fode: ∀k, |arg(λk)| > απ/2, α ∈ (0, 1) (5)

• Nonlinear stability analysis by the second Lyapunov method exists (Lyapunov function[5]):

ode: Strong stability, fode: “Mittag-Leffler” stability (implies strong stability).

• Critical points correspond to constant solutions (Caputo):

ode:

d~x

dt
= ~f(~x), fode:

cDα~x = ~f(~x), ~f(~x) =~0. (6)
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3.2 Drawbaks

Some properties, many of which are everyday tools, do not transfer to the fractional models.

• The Leibniz rule is not valid.

• The chain rule is not valid.

• The eigenfunctions of fractional derivatives are not orthogonal (thus, no Fourier Series).

• Higher order equations do not correspond necessarily to a system of unique order.

• What is now the phase space?
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3.3 An example: a visco-elastic linear model

We consider a thin plate of surface smoving vertically in a fluid of density

ρ, with viscosity µ, attached to a spring with constant k, subject to an

external force f(t). The behaviour of the displacement x(t) is modeled

by the fractionally damped equation:

ẍ+ a cDαx+ kx = f(t) (7)

with a some constant that depends on µ, ρ and s.

This linear system can be (formally) solved by the Laplace transform,

depending on the initial conditions x(0), ẋ(0).

Let be L
(

x(t)
)

= Y (p), L
(

f(t)
)

= F (p):

Y (p) =
F (p) + (p+ apα−1)x(0) + (1 + apα−2)ẋ(0)

p2 + apα + k
.

In the cases where 2/α is rational, with zero initial conditions, it can be formulated, by

congruent decomposition as a spectral problem for some basic operator cDp/q.
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Application: α = 3/2, x(0) = ẋ(0) = 0.

Since we have zero initial conditions we have:

cD
1/2

(cD1/2x) = cD2/2x, etc.

We define auxiliary variables xk such that x0 = x and express the equation as






































cD1/2x0(t) = x1(t),

cD1/2x1(t) = x2(t),

cD1/2x2(t) = x3(t),

cD1/2x3(t) = −kx0(t)− ax3(t) + f(t),

xk(0) = 0, k = 0, 1, 2, 3.

⇐⇒ cD1/2~x = M~x+ ~v(t).

M =









0 1 0 0

0 0 1 0

0 0 0 1

−k 0 0 −a









, ~x =









x0

x1

x2

x3









, ~v =









0

0

0

f(t)









.

We then diagonalize M , uncouple the equations representing ~x in a basis of eigenvectors

(complex), solve and, finally, transform back to obtain x(t) = x0(t).
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Or we can solve numerically: (the periodic limit cycle is not a solution)

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

v

x

α=3/2
α=1

 2.58

 2.585

 2.59

 2.595

 2.6

 2.605

 2.61

 0.61  0.615  0.62  0.625  0.63  0.635  0.64
v

x

α=3/2
α=1

Figure 4: a = 3, k = 1, f(t) = 8 cos(t)
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Second example: Bagley-Torvik Equation

It corresponds to the i.v.p. with Caputo fractional derivative of order 3/2 given by:






D2x(t) + 2D3/2x(t)− 3x(t) = sin(t),

x(0) = x′(0) = 0.

we can solve it, as the previous example, by congruent decomposition. The linear system is, in

this case:

D1/2~x(t) = M~x+ ~c,

M =









0 1 0 0

0 0 1 0

0 0 0 1

3 0 0 −2









, ~x =









x0

x1

x2

x3









, ~c =









0

0

0

sin(t)









.

The eigenvalues of M are:

λ1 = 1, λ2 = −1− 3
√
2, λ3,4 = −1 +

3
√
2

2
± i

√
3

3
√
2

2
.

In the “classical” case (α = 1) the solution is unbounded:

x(t) =
1

8
et − 1

40
e−3t − 1

10
cos(t)− 1

5
sin(t).

But for α = 3/2 we obtain a periodic curve as the limit.
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Figure 5: solution of the Bagley-Torvik Problem for α = 1 and for α = 3/2.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 3 Some FODE models 32/38



3.4 An example: a visco-elastic nonlinear model

Figure 6: Guckenheimer & Holmes [6], experimental

setup of the Duffing equation.

The equation

ẍ+ γcDαx− x+ x3 = f0 cos(ωt) (8)

is a “visco-elastic-damped” counterpart

of the Duffing equation:

ẍ+ γẋ− x+ x3 = f0 cos(ωt). (9)

It corresponds to the same device but

inmersed in a visco-elastic fluid. With a

Cauchy problem x(0) = x0, ẋ(0) = v0,

it has a unique solution starting at time

t0 = 0.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 3 Some FODE models 33/38



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1.5 -1 -0.5  0  0.5  1  1.5

v

x

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5  0  0.5  1  1.5

v

x

x0=0.8, v0=0.

Figure 7: The strange attractor of the integer-oder (left) and of the fractional-order Duffing

equation (right).

Property

Let us consider, for instance, the following initial value problem:






ẍ+ γ
(

cDα
t+
1

x
)

t
(t)− F (x) = f0 cos(ωt),

x(t1) = a , ẋ(t1) = b .
(10)
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We use:

(

cDα
t+
1

x
)

t
(t) =

1

Γ(n− α)

∫ t

t1

∂n

∂τn x(τ)

(t− τ)α+1−n
dτ

=
1

Γ(n− α)

∫ s

0

∂n

∂σn x(t1 + σ)

(s− σ)α+1−n
dσ [t = t1 + s, τ = σ + t1]

= (cDα
0+x)s (t1 + s) = (cDα

0+y)s (s), [y(s) = x(t1 + s)] (11)

and we rewrite (10) as






y′′ + γ
(

cDα
0+y

)

s
(s)− F (y) = f0 cos(ωs+ φ0), φ0 = ωt1 ,

y(0) = a , y′(0) = b .
(12)

where the prime stands for derivation with respect to s. We obtain the same system as (10) but

at t = 0 and with an initial time-phase. If, for instance, t1 = 2π/ω, a = x0 and b = v0, (12)

becomes (8).
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Conclusions

• All solutions can be reached from t0 = 0 We may consider that any solution that starts at

a later time is, in fact, a solution that started at t0 = 0 but with a phase.

• We still don’t know. . . We still don’t know how to prolong a given solution from the

“state” it is at a given time.

• But. . . Our Cauchy problem, for any solution, can be stated at time t0 = 0 with three

values: x0, v0 and φ0.

• 3-dim space We conclude that our phase space has three dimensions: R× R× [0, 2π).

• 2-dim in practice for many purposes Just as for a noautonomous “classical” system. Since

the initial phase is a constant, it is not relevant for many aspects when analysing the

solutions.

• So. . . What is the phase space, in practice, for a fractional system? The space of initial

conditions or the space of conditions to prolong a solutions?

See for instance [7, 8].
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l’ordre de dérivation, Ph.D. Dissertation, Université Paris Nord, 1994.
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