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Créneaux Descriptifs

8h30 - 9h | Accueil, présentation des intervenants, description des ateliers
9h - 10h30 | Exposés de Maxime EGEA et Frangois BERNARD
10h30 - 12h | Démarrage des ateliers
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14h - 15h30 | Exposés de Fathi BEN ARIBI et Salvador JIMENEZ
15h30 - 16h | Dégustation des wes et votes

16h - 17h | Reprise des ateliers

17h Cloture du 7-day

FicURE 1 — QR code pour le vote de la meilleure Pie.



1 Exposés

1.1 Maxime Egea
Titre : A la découverte des chaines de Markov.

Résumé : Introduites par Andrei Markov en 1906, les chaines de Markov occupent aujourd’hui
une place centrale dans la recherche en probabilités. Cette présentation sera ’occasion de découvrir
ces outils mathématiques au travers d’exemples simples, concrets et variés. De maniere intuitive et
accessible, nous explorerons un théoréeme important 1ié a la stabilité de ces chaines, qui permettra
de répondre a certaines questions posées au cours de la présentation.

1.2 Francois Bernard
Titre : Résultant et discriminant : déméler les racines du probléeme.

Résumé : Etant donné un polynome complexe de degré 2, tous les bacheliers connaissent la formule
< b? — 4ac >. Cet outil, appelé discriminant, permet de déterminer le nombre de racines distinctes
du polynome. En effet, le discriminant s’annule si et seulement si le polynéme admet une unique
racine. Dans cette présentation, nous introduirons un outil plus général : le résultant. Pour deux
polynémes de degrés quelconques, le résultant est une formule exprimée en fonction de leurs coeffi-
cients qui s’annule si et seulement si les polyndmes partagent une racine commune. En particulier,
en calculant le résultant d’un polynome avec sa dérivée, on obtient une généralisation de la formule
du discriminant aux polyndomes de degrés arbitraires. Apres avoir expliqué la définition de ces deux
outils, nous présenterons quelques-unes de leurs nombreuses applications.

1.3 Fathi Ben Aribi

Titre : La théorie des neuds, un domaine tres attachant.

Résumé : Avez-vous déja noué une ficelle ? Bravo, vous avez toutes les qualifications requises pour
venir découvrir la théorie des noeuds.

D’abord initiée par des physiciens pour décrire les atomes, et récemment utilisée par des biolo-
gistes pour détricoter ’ADN de nos cellules, cette théorie mathématique vise & classifier les nceuds,
a I’aide d’outils variés, comme les... coloriages 7

Si cela vous intrigue, venez rejoindre cet atelier théorique et pratique pour comprendre de nou-
velles ficelles des mathématiques !

1.4 Salvador Jiménez
Titre : Le calcul fractionnaire comme outil de modélisation.

Résumé : Le calcul fractionnaire étend les intégrales et les dérivées a des ordres non-entiers. On
I'utilise pour modéliser la non-localité ou les effets de mémoire dans des systemes. Nous traiterons
différents exemples et applications.



2 Ateliers

2.1 Un ascenseur pas pratique — Théo Jamin

Vous venez de monter dans un ascenseur possédant seulement 4 boutons :
— un bouton permet de monter de 5 étages,
— un autre permet de descendre de 5 étages,
— un troisieme propose de monter de 7 étages,
— et le dernier, de descendre de 7 étages.
On supposera qu’il n’y a pas de limite d’étages en descendant ni en montant.
Est-il possible d’aller au 243%™ étage avec cet ascenseur ?
De maniere plus générale, & quel étage peut-on se rendre ?
Que se passe-t-il si je change 5 par 11 et 7 par 17?7 Ou encore par n et m?

Pouvez-vous trouver un algorithme pour se rendre (si cela est possible) & I’étage £7

AR i

Si 'on impose que ’ascenseur ne peut plus descendre en dessous du rez-de-chaussée ?

2.2 Une lettre d’Euler — Théo Jamin

Vous avez regu une lettre d’EULER. Malheureusement, vous venez de faire tomber votre café
dessus... Vous 'ouvrez et découvrez qu’une partie est illisible. Vous lisez

J’ai trouvé une élégante formule qui relie le nombre de sommets s, de faces f et d’arétes a de
n’importe quel polyédre convexe de l’espace :

s—a+ f=2.

Pourriez-vous imaginer une preuve que vous pourriez transmettre a la communauté mathématique ?

2.3 Un passager anarchiste — Théo Jamin

Un avion a des places numérotées de 1 a n, avec n un entier naturel. Le jour de 'embarquement,
toutes les places ont été attribuées a un passager et les passagers se présentent dans 1’ordre de leurs
numeéros de siege. Le premier passager, ne respectant pas les régles, s’assoit au hasard (il est possible
qu’il s’assoie & sa place attitrée). Les passagers suivants s’assoient a leur place attitrée si elle est
libre et sinon s’assoient au hasard.

1. Pour n = 2,3 ou 4, déterminer la probabilité que le dernier passager puisse s’asseoir a sa place.

2. Déterminer cette probabilité pour n quelconque.

2.4 Un jeu dangereux — Théo Jamin

Vous participez a un jeu dans lequel, a chaque fois qu'une personne est touchée elle est éliminée.
Vous étes disposés en cercle et on vous attribue un numéro de 1 & n (pour n le nombre de joueurs)
dans le sens des aiguilles d’'une montre. Le premier joueur touche la personne suivante, qui est donc
éliminée. Le joueur suivant fait de méme et le jeu continue jusqu’a ce qu’il n’y ait plus qu’un joueur
restant qui est déclaré vainqueur. Trouver un critére pour choisir votre place en fonction du nombre
de joueurs n.



2.5 Le chat et la souris — Théo Jamin

Vous étes dans votre jardin et vous venez de voir une souris tomber dans votre piscine (tout &
fait ronde). Votre chat, comme tous les chats, aime les souris mais a horreur de 1’eau. Vous notez
que votre chat se déplace quatre fois plus vite que la souris.

La question que vous vous poser est donc la suivante : la souris réussira t-elle a sortir de la
piscine sans se faire attraper par le chat ?

2.6 Les maisons de Dudeney — Théo Jamin

Trois familles voisines se détestant mutuellement ont besoin d’eau, d’électricité et de gaz et
doivent donc accéder quand elles le veulent aux trois usines. Vous étes le maire de la ville ou
habitent ces familles. Elles vous demandent de ’aide pour ’acces aux usines et expliquent qu’elles
souhaitent que vous construisiez les routes d’acces de chacune des maisons a chacune des usines,
cependant, elles ne doivent pas se croiser pour éviter tout probléeme. Avez-vous une solution 7 Que
se passe t-il si les familles habitent sur une autre planete possédant une géométrie différente de celle
de la terre?

Peut-étre que le groupe ayant recu la lettre d’EULER pourra vous aider...

2.7 The Flame Fractal Algorithm — Théo Jamin

L’objectif de cet atelier est de construire informatiquement des fractales en suivant la méthode
FFA et d’étudier les aspects mathématiques. Les fractales obtenues peuvent ressembler &

FIGURE 2 — Exemple de < flame fractal >



Définition 1. Soit f : R? — R? une fonction et soit 0 < k < 1. On dit que f est k-contractante si

vp,p' € R, d(f(p) - f(2)) < kd(p,p')

Fixons maintenant n applications fi,..., f, : R> — R? k-contractantes. On s’intéresse & I’en-
semble S C R? tel que

A priori, cet ensemble est difficile & calculer mais nous allons I’approcher informatiquement en
suivant l'algorithme < chaos game .

Définition 2 (Chaos game algorithm). Soit N € N et (zo,y0) € [—1,1]* choisit aléatoirement.
L’algorithme est le suivant
Pour £ =1 jusqu’a N :

1. On choisit aléatoirement i € [1,n],

2. on caleule (zg,yx) = fi(Th—1,Yb-1),
3. dessiner (zg,yx) des que k > 20.

Voici donc Patelier proposé (vous pouvez répondre aux questions dans le désordre).

2.7.1 Aspects Mathématiques

1. Montrer que les fonctions

K= (30). n=(T12) e = (3250)

sont contractantes.

2. Montrer que la composée de fonctions k-contractantes est encore contractante (on pourra
préciser le coefficient de contraction).

3. En supposant que toutes les fonctions f; sont %—contractantes, montrer que
Vk > 20, d((xk,yx),S) <107°

(autrement dit, aprés 20 itérations, les points (xj, yx) sont trés proches de S).

2.7.2 Aspects informatique

1. Coder l'algorithme chaos game qui prend comme argument n-fonctions et N itérations.
2. Le tester pour les fonctions f1, fo et f3 données précédemment.

3. Attribuer & chaque fonction f; une couleur ¢; et dessiner & chaque étape le point (xg,yr) =
fi(xp—1,yx—1) avec la couleur ¢;.

4. Lorsque l'algorithme tourne, rendez-vous sur le site https://flam3.com/flame_draves.pdf
et remplacer les fonctions f1, fo et f3 par celles proposées dans le document.

5. Amusez-vous a faire des fractales!

2.8 Cardinaux de N, Z et Q — Théo Jamin

1. Soit A C N un sous-ensemble infini. Montrer que A et N sont en bijection.
2. Montrer que
f:N?2 5 N* (n,m)~—2"(2n+ 1)
définit une bijection entre N2 et N*.

3. Montrer qu'il existe une bijection entre Q et N. En existe t-il une entre N et R 7


https://flam3.com/flame_draves.pdf

2.9 Groupe du Rubik’s cube — Théo Jamin
On appelle groupe la donnée de (G, X) un ensemble G muni d’une loi interne
x:GxG—G

telle que
1. la loi x est associative :

Ve,y,z € G, xx(yxz)=(rxy) Xz
2. il existe e € G, appelé élément neutre, qui vérifie
VeeG, xzXe=eXx=ux.
3. tout élément de G possede un symétrique
VeeG, Jye G, xxy=e.

On peut montrer que le symétrique est unique et on le notera alors ~'. Apres avoir cherché quelques
exemples simples de groupes, on pourra montrer que l’ensemble des mouvements du rubik’s cube
forment un groupe R muni de 'opération < suivi de... >. L’objectif de ce sujet est de réussir a suivre
le plus loin possible le raisonnement suivant (qui est détaillé ici : http://trucsmaths.free.fr/
rubik_groupe.htm#gen)
1. Un mouvement du rubik’s cube induit une permutation des cubes sommets et de la méme
fagon, il induit une permutation des cubes arétes.
2. Ces ensembles sont de cardinal 8 et 12 respectivement et on peut alors construire un morphisme
de groupes
res:R—>68><612

3. L’image de ce morphisme est I’ensemble
Im(res) = {(0,0") € Gg x S15 | sgn(c) = sgn(c’)}

4. En fixant maintenant les orientations des arétes et des sommets (que I'on peut coder respecti-
vement par {0, 1} et {0, 1,2} pour chacun d’eux), on s’intéresse aux éléments de G qui laissent
toutes les pieéces invariantes et qui modifie 'orientation. Autrement dit, il s’agit de calculer le
noyau du morphisme res.

5. Finalement, on peut montrer que

R ~ Im(res) x ker(res).

2.10 Parcours eulériens de graphes — Pablo Jiménez

On cherche a dessiner une une forme comme celle-ci sans lever le crayon du papier, et sans passer
deux fois par la méme aréte. Arrivez-vous a le faire sur le dessin de gauche? Et celui de droite ?
On appelle un tel chemin un parcours eulérien du graphe G en question. En étudiant le nombre
d’arétes qui sortent de chaque sommet, ce qu’on appelle le degré du sommet, trouvez une fagon de
différencier les graphes qui admettent un parcours eulérien de ceux qui n’en ont pas.


http://trucsmaths.free.fr/rubik_groupe.htm#gen
http://trucsmaths.free.fr/rubik_groupe.htm#gen

2.11 Le jeu de Marienbad — Pablo Jiménez

Le jeu de Marienbad se joue a deux : des allumettes sont disposées en quatre rangs de 1, 3, 5
et 7. Chaque joueur prend alors a son tour le nombre d’allumettes qu’il souhaite dans une seule
rangée. Le gagnant est celui qui prend la derniere allumette.

[} [} [}
o o o . )
A A
° ° 0 . 0 ° ° ° * o - P Etc...
B
o o o o o o o o o o o o o o o o o o o o o

L’un des deux joueurs a-t-il une stratégie gagnante ? Et si on modifie les regles?

2.12 Collection de cartes — Maxime Egea

Le jeune Sacha cherche & compléter sa collection de 151 cartes. Chaque paquet de 4 cartes
coute 1 euro et chaque carte a la méme probabilité d’étre obtenue. En moyenne, Sacha se demande
combien va couter 'obtention de la collection complete ? Pour répondre au probléme, on propose
de le modéliser comme suit : X,, est le nombre de cartes différentes obtenues apres avoir acheté n
cartes.

Questions

1. Expliquer pourquoi (X, )nen est une chaine de Markov. Décrire Iespace d’état et sa matrice
de transition. On rappelle que la matrice de transition P = (p;;) d’une chaine de Markov est
définie par :

pij = P(X1 =7 | Xo =1).

2. On note T} le nombre d’achats nécessaires pour obtenir une nouvelle carte lorsque 1'on possede

déja k cartes différentes. Quelle est la loi de Ty, 7

3. Que vaut l'espérance de T} 7 En déduire le nombre moyen d’achat nécessaire compléter la
correction.

4. Donner une estimation du cotit moyen total pour compléter la collection.
Indication : On pourra utiliser la formule :

n
k=1

ol v =~ 0.58 est la constante d’Euler.

In(n) + +1+ !
=1In(n — 4ol =
RS n/)’

| =
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Motivations
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Cadre Mathématique

Notations
On définit
e Un (Q,F,P).
e Un E. Pour cette présentation, E = {1,2,..., M}
est fini.
e Une suite de Xn : Q+— E ou n représente
I'évolution dans le temps.

e Quand E est fini, on décrira la loi d’une v.a X avec un
X~ (P(X=1),...,P(X =M)).

Exemple : le modele de la météo

a={ 1+, ey et E={1,2,3)

AAAAA
A

MAXIME EGEA Chafnes de Markov 14/03/2025
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Chaine de Markov

Définition

Soit (Xn)n>0 une suite de variables aléatoires prenant leurs valeurs dans un
espace d’états E. On dit que (X,)n>0 est une chaine de Markov si elle
vérifie la , C'est-a-dire :

IP)()<n—i-1 =J | Xn = Xn, Xn—1 = Xp—1,..., X0 = i)
=P(Xp41 = | Xn =),

pour tout n > 0 et pour tout (i,j,x1,...,x,) € E"2.

La chaine est dite si ses probabilités de transition ne
dépendent pas de n :

pij = P(Xpp1=j [ Xn=1)=P(X1 =j | Xo =),
pour tout i,j € E et n € N.

MAXIME EGEA Chafnes de Markov 14/03/2025 4/17



Matrice de transition
Définition
Dans le cas d’une chaine de Markov homogéne, on peut définir sa matrice
de transition P :
P = (pjj)i<ij<n-

Par exemple :

&R W o M

0.5 05 0
0,3 r
o 0.3 .
VA

@‘.‘.‘.‘.‘\_/'_@ 0.1 05 04

0,5
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Equation de Chapman-Kolmogorov

Pour i, k € E on définit

p,(:) =P(Xn, =k | Xo = i),
on note P(M |3

Théoreme (équation de Chapman-Kolmogorov)

Soit (Xn)n>0 une chaine de Markov sur un espace d'états E avec matrice
de transition P, alors on a

p(n) — pn.

La matrice de transition en n étapes est égale a la puissance n-ieme de la
matrice de transition.

Cela nous permet de décrire la loi de X, matriciellement.

MAXIME EGEA Chafnes de Markov 14/03/2025 6/17



Loi de X5 dans le modele de météo

Avec la formule des ,on a

P(Xi =j) =Y P(X =j| Xo=i)P(X = i).
icE .

=pjj

Donc, si on note p le vecteur ligne de la loi de Xp, on a X7 ~ puP.
Par exemple, si u = (1,0,0) alors d'apres |'équation de

05 05 0 05 05 0
X>~(1,0,0)x 0.3 0.3 04| %x]03 03 04
0.1 05 0.4 0.1 05 0.4

MAXIME EGEA Chafnes de Markov 14/03/2025 7/17



Loi de X5 dans le modele de météo

Avec la formule des ,on a

P(Xy=j) =Y P(Xi=j| Xo=i)P(Xo = i).
i€cE :‘;j

Donc, si on note p le vecteur ligne de la loi de Xp, on a X7 ~ puP.
Par exemple, si u = (1,0,0) alors d'apres |'équation de

Xy ~ (1,0,0) x

an B o
Ko R~ o=
I
7N\
Gl N
|
|
~__

No B~ an
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Classification des états

Définition
e Ondit qu'un état i € E avec j s'il existe n tel que
P(Xp=j|Xo=1i)>0
e |l est si la probabilité d'y revenir en temps fini est
strictement inférieure 3 1 et sinon.
e Unétati € E est s'il existe un entier d > 1 tel que les

retours a i se font uniquement aux multiples de d.

Une chaine est dite si tous les états communiquent entre eux.

Dans l'exemple de la météo,
la chaine de Markov est ﬁ 0@,5
. 0,4
B
@\O‘A.O“‘O\J @

05

v
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loi stationnaire

Définition
Une loi 7 est un vecteur ligne & M coordonnées dont la
somme des coefficients vaut 1 et telle que

TP = .

Cela signifie que si 7 est la loi initiale alors, la chaine gardera la méme loi
a chaque instant.

Proposition

Si la chaine de Markov est alors il y a existence et unicité de
la loi

MAXIME EGEA Chafnes de Markov 14/03/2025 10/17



Temps moyen passé a chaque état

Théoreme (Ergodique)

Soit (Xn)n>0 une chaine de Markov irréductible de loi stationnaire 7. Pour
toute fonction f : E — R , on a la convergence suivante :

% D A(X) =) ()
k=1

i€cE

En particulier, si f est I'indicatrice de I'état j :

1 six—]
f(x) Si X =

0 sinon.

Le théoreme décrit le

MAXIME EGEA Chafnes de Markov 14/03/2025 11/17




loi stationnaire pour la météo

La chaine est donc

il existe une unique @
. II'n’y a plus qu'a résoudre

le systeme (;
05 05 0 N Q«
7|03 03 04|=m, C
@\0‘6.6““ @
0.1 05 04 0%
— (11 5 5
on trouve m = (% > E)'
Le nous permet d’affirmer que, sur un temps long, il

fera du soleil 11 jours sur 36 en moyenne.
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Espace d'états E fini - Résumé

A partir d'une dynamique d'évolution, on sait construire la
de la chaine.

Grace a I'équation de , on sait décrire la loi
de la chafne a tout instants n.

On sait les états : ou

Quand la chaine est , on a vu un résultat de
vers la loi stationnaire. Sous des hypothéses plus fortes, il
y a aussi de la chaine vers la loi stationnaire.

Quid de E infini ?

MAXIME EGEA Chafnes de Markov 14/03/2025 13 /17



Chaines de Markov en espace d'états infini

e La matrice de transition devient un opérateur, il y a aussi une
équation de

e L'irréductibilité de la chaine
I'existence d'une loi stationnaire.

e |l faut en plus que la chaine soit pour avoir
existence et unicité.

e Dans le cas d'une chaine et ilya
convergence en loi de la chaine et un théoreme ergodique.

MAXIME EGEA Chafnes de Markov 14/03/2025 14 /17



Le voyageur perdu - Marche aléatoire en 2-dimension

Définition

e X, € 72 est la position du
voyageur a l'instant n, a chaque
instant il avance au hasard dans
['une des 4 directions.

e On suppose qu'il a commencé
sa marche Xy = (0,0), /a ou se
trouve son logement.

A t’il une chance de rentrer en temps fini ?

MAXIME EGEA Chafnes de Markov 14/03/2025 15 /17



Le voyageur perdu - Marche aléatoire en 2-dimension

Proposition

Une marche aléatoire (Xp)n>0 dans 79 est si et seulement si

+00
> P(X; =0) = +o0.
i=1

e On peut montrer que P(Xz, = 0) = -1 et donc (X,)n>0
i.e elle revient a I'origine une infinité de fois (p.s).

e En revanche, elle et elle
Remarque
En 3-dimension, on a P(Xy, = 0) ~ W donc la chaine n’est pas

récurrente. Cela signifie qu’un pigeon ayant perdu tout sens d’orientation
a des chances de ne jamais rentrer au nid !

MAXIME EGEA Chafnes de Markov 14/03/2025 16 /17




Merci pour votre attention !
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Introduction

— Un polyndme est une expression de la forme
P(X)=anX"+a, 1 X" 1+ +a

ol X est une indéterminée et les a; € C sont appelés coefficients de P.

Frangois Bernard Résultant et discriminant 14 mars 2024 2 /17



Introduction

— Un polyndme est une expression de la forme
P(X)=anX"+a, 1 X" 1+ +a
ot X est une indéterminée et les a; € C sont appelés coefficients de P.

— Un nombre a € C est appelé racine de P si P(a)) = 0.

Exemple

Le nombre d'or #g est une racine du polynéme X2 — X — 1.

Le coeur de la géométrie algébrique consiste & étudier les racines communes de
plusieurs polyndmes a plusieurs variables.

Frangois Bernard Résultant et discriminant 14 mars 2024 2 /17



Résultant

Frangois Bernard

Résultant et disc




Résultant
Soient
P(X) = a, X"+ a,,_lX"_l “+ -4+ ag

et Q(X)=bpX"+ bp_1X™ 1+ + by

On veut savoir si le systéme

anX"+ a1 x"14+---4+a,=0
BX™ + byp_1x™ L 4o 4 by =0

admet une solution.

Frangois Bernard Résultant et discriminant 14 mars 2024 3 /17



Résultant

Soient
P(X) = a, X"+ a,,_lX"_l “+ -4+ ag

et Q(X)=bpX"+ bp_1X™ 1+ + by

On veut savoir si le systéme

anX"+ a1 x"14+---4+a,=0
BX™ + byp_1x™ L 4o 4 by =0

admet une solution.
— On considére Resx (P, Q) € C le résultant de P et Q.

Proposition
Resx (P, Q) = 0 si et seulement si 3o € C tel que P(a) = Q(«) = 0.

Frangois Bernard Résultant et discriminant 14 mars 2024
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Calcul du résultant

Considérons la matrice de Sylvester de taille (m + n) x (m+ n)

a, 0 - 0 b, 0 --- 0
an—1 ap - : © b
ap-1 - 0 : L0
: an b bm
ao an—1 bo
o 0 b
. a1 . by by
0 .0 a 0 - 0 b

— Le résultant est donné par le déterminant de cette matrice.

— On effectue un pivot de Gauss, puis on multiplie les éléments sur la diagonale.

Frangois Bernard

Résultant et discriminant
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Exemple

On veut savoir si le systéme

xXS+2x3+4=0
x*+x+7=0

admet une solution.

On calcule

100 01 00O0TO0
010001000
2 01 00O0T1O00
020110010
00207 1001
4 0 0207 100
0400007 10
004000071
0 00 400007

Frangois Bernard Résultant et discriminant

14 mars 2024
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— ol 71 5379
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i
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Exemple

On veut savoir si le systéme

o
o
< |l
+ ~
.+
S x
+ +
n <
X X
——

admet une solution.

On calcule

oo ~o YHko o
0109,_1m7u000
oY ~doooo
coo-Hooooo t
cooooooo ”m
v
oO~ocooocooo ..M
=R =N=R=R=R=N=) m
I 3
RS
CoOOoOHOOHN~O
co~oco-N~OO
oOHOoOOHN~NOOO
OO0 HN~NOO OO -
[
coo—-oNOO S m
co—-HoOANOOSO m,
o-~ocNOoOO<TOO £
—~—oONOOTOOO

14 mars 2024




Formule de Héron

=] = = E A
Frangois Bernard Résultant et discriminant



Formule de Héron

Soit ABC un triangle non plat du plan. On désire exprimer son aire A en fonction
des longueurs a = BC, b = AC et ¢ = AB de ses cotés.

B

Théoréme (Formule de Héron)

En notant p = 4(a+ b+ c) le demi-périmétre de ABC, on a

A=+/p(p—2a)(p—b)(p— c).

Frangois Bernard Résultant et discriminant 14 mars 2024 7 /17



Formule de Héron

A(0,0)

C(b,0)

o = = E A
Frangois Bernard Résultant et discriminant



Formule de Héron

<
")

5----

A(0,0) b C(b,0)

— La formule de I'Aire nous donne A — %by =0.

Frangois Bernard Résultant et discriminant 14 mars 2024 9 /17



Formule de Héron

A{0,0)

b C(b,0)

— La formule de I'Aire nous donne A — %by =0.

— Le théoréme de Pythagore nous donne

{

Frangois Bernard Résultant et discriminant

xX>4+y?—-c?2=0
(b—x)?+y?—2a*>=0

14 mars 2024
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Formule de Héron

On pose
P(X)=X2+y?—c?
et Q(X)=(b—X)*+y*-2

— On sait que x est une racine commune a P et Q.

Frangois Bernard Résultant et discriminant 14 mars 2024 10 / 17



Formule de Héron

On pose
P(X)=X2+y?—c?
et Q(X)=(b—X)*+y*-2

— On sait que x est une racine commune a P et Q.

On a donc

1 0 1 0

0 1 —2b 1
Resx(P,Q) = yio 2 0 B4 y?— 22 _2b

0 y2—c? 0 b? + y? — a2

= 4b%y? + a* — 2a%b% — 23%c? + b* —2b%c? 4+ ¢4

=0

Frangois Bernard Résultant et discriminant 14 mars 2024
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Formule de Héron
On pose

W(Y)=4b’Y? + a* — 2a°b* — 2a°c® + b* — 2b°c* + ¢*
et V(Y)= —%bY+A

— On sait que y est une racine commune a W et V.

Frangois Bernard Résultant et discriminant 14 mars 2024 11 / 17



Formule de Héron

On pose

W(Y)=4b’Y? + a* — 2a°b* — 2a°c® + b* — 2b°c* + ¢*
et V(Y)= —%bY+A

— On sait que y est une racine commune a W et V.
On a donc
Resy(W,V) =1b*(164%—(a+b+c)(a+b—c)a—b+c)(—a+b+c))
= 241642 — 2p x 2(p — ¢) x 2(p — b) x 2(p — a))
=8b*(A% — p(p — c)(p — b)(p — a))

=0

Au final

A= +/p(p—a)(p—b)(p—c)

Frangois Bernard Résultant et discriminant 14 mars 2024 11 / 17



Intersection de surfaces

=] = = E A
Frangois Bernard Résultant et discriminant



Intersection de surfaces

Le résultant permet d'éliminer une variable quand deux figures géométriques
s'intersectent.

En rouge P(x,y,z) = y* +x* =2 =0

Figure - En jaune Q(x,y,z) =y +x*+2°=0

3

Ici, par exemple, Resy (P, Q) = (x? + z2)? — z3 — x? = 0 sur 'intersection.

Frangois Bernard Résultant et discriminant 14 mars 2024 12 / 17



Discriminant

Francois Bernard

Résultant et disc




Discriminant

Théoréme (fondamental de I'algébre)

Soit P(X) = a,X" + a,_1 X"t + .-+ ag avec a; € C. Alors il existe
ai, ..., a, € C tels que

P(X) = an(X — 1) ... (X — an)

Frangois Bernard Résultant et discriminant 14 mars 2024 13 / 17



Discriminant

Théoréme (fondamental de I'algébre)

Soit P(X) = a,X" + a,_1 X"t + .-+ ag avec a; € C. Alors il existe
ai, ..., a, € C tels que

P(X) = an(X — 1) ... (X — an)

— On cherche a savoir si les racines sont distinctes.
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Discriminant

Théoréme (fondamental de I'algébre)

Soit P(X) = a,X" + a,_1 X"t + .-+ ag avec a; € C. Alors il existe
ai, ..., a, € C tels que

P(X) = an(X — 1) ... (X — an)

— On cherche a savoir si les racines sont distinctes.
Définition
On considére le polynéme dérivé

P'(X) = na,X" 1+ (n—1)a, 1 X" 2+ +a

Remarque :

(v1uwous) = ui(uous) + ur(waus)’
= ujupuz + v (Uhus + wpuf)
= uUjlouz + uyubus + U UG

Frangois Bernard Résultant et discriminant 14 mars 2024

13 / 17



Discriminant
Si P(X) = (X —a1)(X — a2)(X — a3), alors

P'(X)=(X—a)(X —a3)+ (X —a1)(X —az) + (X —a1)(X — a2)

Frangois Bernard Résultant et discriminant 14 mars 2024 14 / 17



Discriminant
Si P(X) = (X —a1)(X — a2)(X — az), alors
P’(X) = (X — az)(X — a3) + (X — Oél)(X — 043) -+ (X — al)(X — Ozg)

Ainsi, par exemple, P'(a1) = (a1 — an)(o1 — a3)

Frangois Bernard Résultant et discriminant 14 mars 2024 14 / 17



Discriminant
Si P(X) = (X — a1)(X — a2)(X — ), alors
P'(X)=(X—a)(X —a3)+ (X —a1)(X —az) + (X —a1)(X — a2)
Ainsi, par exemple, P'(a1) = (a1 — az)(a — a3)
De maniére générale :

P'(;) = 0 si et seulement si 3j tel que o = «;.

Proposition
Les propriétés suivantes sont équivalentes :
@ Les racines de P sont distinctes.

@ P et P’ n'ont pas de racines communes.
@ Resx(P,P’) #0.

Frangois Bernard Résultant et discriminant 14 mars 2024 14 / 17



Discriminant
Si P(X) = (X — a1)(X — a2)(X — ), alors
P'(X) = (X = a2)(X — az) + (X — a1)(X — a3) + (X — 1)(X — a2)
Ainsi, par exemple, P'(a1) = (a1 — az)(a — a3)
De maniére générale :

P'(;) = 0 si et seulement si 3j tel que o = «;.

Proposition
Les propriétés suivantes sont équivalentes :
@ Les racines de P sont distinctes.

@ P et P’ n'ont pas de racines communes.
@ Resx(P,P’) #0.

— On note Disc(P) = (G .

a

Resx (P, P’) le discriminant de P.

n(n—1)
2

Frangois Bernard Résultant et discriminant 14 mars 2024 14 / 17



Exemple en degré 2

Pour P(X) = aX?+ bX + ¢, on a P'(X) =2aX + b.

o = = E A
Frangois Bernard Résultant et discriminant



Exemple en degré 2

Pour P(X) = aX?+ bX + ¢, on a P'(X) =2aX + b.

a 2a 0
Resx(P,P')=|b b 2a
c 0 b

Frangois Bernard Résultant et discriminant 14 mars 2024 15 / 17



Exemple en degré 2

Pour P(X) = aX?+ bX + ¢, on a P'(X) =2aX + b.

a 2a 0
Resx(P,P')=|b b 2a
c 0 b

On effectue le pivot de Gauss et on obtient

a 2a 0 dac
Resx(P,P'Y=10 —b 2a |=ax(-b)x(b— T) = —a(b® — 4ac)
0 0 b-—%e

Frangois Bernard Résultant et discriminant 14 mars 2024 15 / 17



Exemple en degré 2

Pour P(X) = aX?+ bX + ¢, on a P'(X) =2aX + b.

a 2a 0
Resx(P,P')=|b b 2a
c 0 b

On effectue le pivot de Gauss et on obtient

a 2a 0 dac
Resx(P,P')=10 —b 2a |[=ax(-b)x(b——)=—a(b®— 4ac)

b
0 0 b-— %

Donc P admet une racine double si et seulement si b?> — 4ac = 0.

Frangois Bernard Résultant et discriminant 14 mars 2024 15 / 17



Exemples en degré 3 et 4

Pour P(X) = aX3+ bX2+ cX +d, on a

Disc(P) = b2c? + 18abcd — 272%d? — 4ac® — 4b>d

Frangois Bernard Résultant et discriminant 14 mars 2024 16 / 17



Exemples en degré 3 et 4

Pour P(X) = aX3®+ bX? +cX +d, on a

Disc(P) = b2c? + 18abcd — 272%d? — 4ac® — 4b>d

Pour P(X) = aX* + bX3+ cX?2+dX + e, ona

Disc(P) = 256a%e3 — 128a%e?c? — 4b3d® + 16ac*e — 4acd? — 192a°bde? —
27b%e? — 6ab®d?e+144ab%ce? + 144a°cd?e — 80abc?de + 18b3cde + 18abcd® +
b?c?d? — 4b2c3e — 27a%d*

Frangois Bernard Résultant et discriminant 14 mars 2024 16 / 17



Cas particulier en degré 4
Pour P(X) = X*+aX2+bX +c,ona

Disc(P) = 16¢(16¢® — 8ca® + a* + 9ab?) — b?(4a® + 27b?)

Frangois Bernard Résultant et discriminant 14 mars 2024 17 / 17



Cas particulier en degré 4
Pour P(X) = X* +aX?+ bX +c,ona

Disc(P) = 16¢(16¢® — 8ca® + a* + 9ab?) — b?(4a® + 27b?)

Figure — La surface Disc(P) =0

Frangois Bernard Résultant et discriminant 14 mars 2024 17 / 17



Cas particulier en degré 4
Pour P(X) = X* +aX?+ bX +c,ona

Disc(P) = 16¢(16¢® — 8ca® + a* + 9ab?) — b?(4a® + 27b?)

Figure — La surface Disc(P) =0

Merci pour votre attention !

Frangois Bernard Résultant et discriminant 14 mars 2024 17 / 17
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Les noeuds en mathématiques

Nceud : Trajectoire d'une ficelle dans I'espace, dont on recolle
ensuite les bouts.

Fathi Ben Aribi La théorie des nceuds



Les noeuds en mathématiques

Nceud : Trajectoire d'une ficelle dans I'espace, dont on recolle
ensuite les bouts.

On veut classer les nceuds, a déformation de la ficelle pres, en
gardant les bouts joints.
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Les noeuds en mathématiques

Nceud : Trajectoire d'une ficelle dans I'espace, dont on recolle
ensuite les bouts.

On veut classer les nceuds, a déformation de la ficelle pres, en
gardant les bouts joints.

Dessins de nceuds

() &

Noeud trivial Naeud de trefle

Fathi Ben Aribi La théorie des nceuds



Table de classification des noeuds




L'origine physico-chimique de la théorie des nceuds

Source : Wikipedia - Vortex theory of the atom

Fin 19e siecle: Lord Kelvin propose I'idée que les atomes sont des
tourbillons dans un fluide qui remplit tout I'univers (I'éther).

Fathi Ben Aribi La théorie des nceuds



L'origine physico-chimique de la théorie des nceuds

Source : Wikipedia - Vortex theory of the atom

Fin 19e siecle: Lord Kelvin propose I'idée que les atomes sont des
tourbillons dans un fluide qui remplit tout I'univers (I'éther).

— Pour classifier les atomes, il suffit donc de classifier les nceuds!
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L'origine physico-chimique de la théorie des nceuds

Source : Wikipedia - Vortex theory of the atom

Fin 19e siecle: Lord Kelvin propose I'idée que les atomes sont des
tourbillons dans un fluide qui remplit tout I'univers (I'éther).

— Pour classifier les atomes, il suffit donc de classifier les nceuds!

— Tait et Little commencent a classifier les nceuds, jusqu’'a 10
croisements.
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GEPENDANT!
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L'origine physico-chimique de la théorie des nceuds

Source : Wikipedia - Vortex theory of the atom

Fin 19e siecle: Lord Kelvin propose I'idée que les atomes sont des
tourbillons dans un fluide qui remplit tout I'univers (I'éther).

— Pour classifier les atomes, il suffit donc de classifier les noeuds!

— Tait et Little commencent a classifier les nceuds, jusqu'a 10
croisements.

Michelson-Morley 1887 prouvent que... L’éther n’existe pas !

Pas grave | Les mathématiciens ont pris le relais entretemps, et
la théorie des nceuds est lancée.
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Défi n°1 : Mon nceud en 5 secondes

En 5 secondes, feras-tu un de ces nceuds, ou un pas dans la table?

OHGHBE

TN ) (N £
2P0

Fo 0N Z Y N
S 8D &P




Reconnaitre un nceud avec |'ordinateur

https://joshuahhh.com/projects/kit/

knot identification tool

Alexander polynomial: 1,-3,5,-3,1

{

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(5

by Joshua Horowitz
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Les regles du tricoloriage

Un dessin de nceud est fait de traits et de croisements.
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Les regles du tricoloriage

Un dessin de nceud est fait de traits et de croisements.
On choisit trois couleurs (par exemple Rouge, Bleu).
Tricoloriage d'un dessin de nceud = Coloriage des traits tel que:

AUTORISE : une ou trois couleurs 3 un croisement
INTERDIT : deux couleurs a un croisement

O K
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Les invariants de noeuds

Invariant de nceud = objet mathématique associé a un nceud,
inchangé si on bouge la ficelle ou on prend un autre dessin!
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Les invariants de noeuds

Invariant de nceud = objet mathématique associé a un nceud,
inchangé si on bouge la ficelle ou on prend un autre dessin!

Contre-Exemple : Le nombre de croisements d’un dessin n'est
PAS un invariant (on peut rajouter des boucles a un neceud !)
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Les invariants de noeuds

Invariant de nceud = objet mathématique associé a un nceud,
inchangé si on bouge la ficelle ou on prend un autre dessin!

Contre-Exemple : Le nombre de croisements d’un dessin n'est
PAS un invariant (on peut rajouter des boucles a un neceud !)

Exemple : Le minimum du nombre de croisements parmi tous
les dessins... c'est un invariant !
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Les invariants de noeuds

Invariant de nceud = objet mathématique associé a un nceud,
inchangé si on bouge la ficelle ou on prend un autre dessin!

Contre-Exemple : Le nombre de croisements d’un dessin n'est
PAS un invariant (on peut rajouter des boucles a un neceud !)

Exemple : Le minimum du nombre de croisements parmi tous
les dessins... c'est un invariant !

Exemple : Le nombre de tricoloriages d'un quelconque dessin
du nceud est un invariant du nceud! (pas évident, admis ici)
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Distinguer les nceuds par le nombre de tricoloriages

Un invariant permet de différencier deux nceuds.
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Distinguer les nceuds par le nombre de tricoloriages

Un invariant permet de différencier deux nceuds.

Noeud trivial : 3 tricoloriages possibles.
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Distinguer les nceuds par le nombre de tricoloriages

Un invariant permet de différencier deux nceuds.

:QZ

Noeud trivial : 3 tricoloriages possibles.

£

Nceud de tréfle : 9 tricoloriages possibles.
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Distinguer les nceuds par le nombre de tricoloriages

Un invariant permet de différencier deux nceuds.

:QZ

Noeud trivial : 3 tricoloriages possibles.

£

Nceud de tréfle : 9 tricoloriages possibles.

— Ce sont deux nceuds différents!
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Knotinfo : une base de données d'invariants de noceuds

https://knotinfo.math.indiana.edu/

Knotinfo: Table of Knots

Search Results

‘ Export to CSV \

Name Fibered Genus Alexander Volume

31 Y 1 1-t+A2 0

4 1 Y 1 1-3*t+A2 2.029883213
51 Y 2 1-t+HA2-A3+104 0

52 N 1 2-3*t+2*t12 2.828122088
6_1 N 1 2-5*t+2*t12 3.163963229
6 2 Y 2 1-3*t+3* 1 2-3* "3 +t"4 4.400832516
6.3 Y 2 1-3*t+5*12-3* "3 +t"4 5.693021091
71 Y 3 1-t+A2-A3+A4-tA5+16 0

Ma recherche : étudier et calculer divers invariants de noeuds.
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Plus d'un siecle de théorie des noeuds

Née de la Physique (XIX¢€ siecle), pour classifier les atomes.
Développée en Mathématiques (XX°¢ — XXI€¢ siecles).

Appliquée en Biologie (années 1990) pour étudier I’ADN.

Des nceuds dans I'ADN empéchent la division cellulaire.
— Recherche de traitements contre les cancers.
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Merci de votre attention !

Avez-vous des questions ?

-
=3

(Bonus : prouvez que c'est un dessin du noeud trivial !)

Fathi Ben Aribi La théorie des nceuds



Le calcul fractionnaire comme outil de modélisation
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Pi Day, 3/14/2025
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1 Introduction

1.1 Modélisation (mathématique)

Nous partons d’un modele physique, chimique, biologique, (financier), ... et essayons de le

représenter sous forme d’expressions (équations) mathématiques.

Exemples

m Désintégration d’un élément radioactif.

e Modele physique : (assez résumé) Un atome quelconque d’un élément radioactif a autant de
chances de se désintégrer a un moment donné qu’'un autre de la méme espece, le nombre de
désintégrations a un instant donné est proportionnel au nombre N d’atomes de méme
espece présents.

e Modele mathématique : soit N(t) le nombre (ou, plutot, la fraction rel ative) d’atomes
radioactifs de notre échantillon, nous avons N'(t) = —AN(t), A € RT.

Nous savons résoudre : N(t) = N(0)e™ .

m Deuxieme loi de Newton

e Modele physique (énoncé archaique) : “Les changements qui arrivent dans le mouvement
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sont proportionnels a la force motrice ; et se font dans la ligne droite dans laquelle cette
force a été imprimée.”

—

v, mv’ =F. En résumé, ma =F.

e Modele mathématique : Z'(t)

Parfois la présentation est trompeuse :

m (Faux) modele d’écologie de Leonardo Pisano (Fibonacci)

e Modele écologique : “Quelqu’un a déposé un couple de lapins dans un certain lieu, clos de
toutes parts, pour savoir combien de couples seraient issus de cette paire en une année, car
il est dans leur nature de générer un autre couple en un seul mois, et qu’ils enfantent dans

le second mois apres leur naissance.” (et tous restent en vie, sinon...)

e (Vrai) modele mathématique: obtenir la valeur de Nis, sachant que N,, = N,,_1 + N, _o et
que NO = N1 =1.

Le but : construire un modele (que ce soit physique, etc, puis mathématique) qui représente

I’essentiel du systeme étudié.

Constructions : de bas en haut (bottom-up), a partir de principes premiers (axiomes) ; de haut

en bas (top-bottom) a partir d’'un modele connu que 'on essaye d’ajuster.

Limitations et risques : le probleme de la vache sphérique ou de I’ensemble vide, le probleme du

modele trop beau.
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1.2 Un cas bien réussi : les systemes dynamiques

Ce sont des modeles mathématiques que ’on retrouve dans de nombreuses formulations pour

représenter 1’évolution d’un systeme avec le temps. Ce temps peut correspondre a une variable

réelle (temps continu) o naturelle (temps discret). De nombreux systémes sont modélisés de
maniere satisfaisante, par exemple en physique, la mécanique (classique ou quantique), la

gravitation, la thérmodinamique, ...

1.2.1 Formulation (temps continu, nombre fini de variables)

Nous avons vu :

:’U)

= (1/m)F,

en général t € R, 7, f € R", 7'

||
&
=
(x

Lz, = fn(Z, ).

e Les composantes de T correspondent aux différentes variables nécessaires a charactériser

I’état du systeme de fagcon unique. Par exemple pour un mobile classique, les trois

composantes de la position, les trois composantes de la vitesse.

e On distingue entre les systemes non-autonomes et autonomes selon si f dépend ou non

explicitement du temps.

S. Jiménez, Le calcul fractionnaire comme outil de modélisation  3/14/2025
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e Tout systeme non-autonome peut se transformer en un autonome, en rajoutant une
variable, x, 11 qui aurait pour dérivée 1 pour tout temps. Mais (¢a ne conduit a rien, ou

presque, et) en pratique ’analyse de ces systémes se fait avec des outils différents.

e En principe on voudra résoudre les équations a partir d’'une donnée initiale: Z(tg) = Zo
(probleme de Cauchy) dans ’espace de configuration R™ x R, et obtenir la trajectoire dans

l’espace des phases R™. En général on n’y arrive pas, mais ...

e Au moins on peut assurer I'existence et 'unicité de la solution a partir de la donnée initiale,
dans un certain intervalle de temps, si le probleme de Cauchy est bien posé : f;(Z,t) sont
continues en t et “lipschitziennes” en Z. (Dans tout intervalle borné la distance entre deux
valeurs de la fonction est majorée par la distance entre les valeurs de la variable fois une
constante : 1'existence de la dérivée n’est pas assurée mais tous les taux d’accroissements

sont bornés para la constante Vsy, s, |h(s1) — h(s2)| < k|s1 — s2].)

e Pour les systemes autonomes ’analyse se fait principalement autour des solutions

constantes (points critiques) qui n’existent pas pour les systémes non-autonomes.
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1.2.2 Etude des points critiques pour un systéeme autonome
m Pour chaque point critique on cherche a établir sa stabilité : quel est le comportement au
voisinage de ce point ?

e Développements limités de chaque f; centrés sur le point critique Zp. Sous forme générale

—

T'(t) = f(Zo) + M(Z — Zo) + o(1) = M(Z — o) + o(1),
M une matrice n X n constante.
e On résout le systeme linéaire associé : i’ = My, [57(t) = eMtgy 1]
e Importance des vecteurs propres.

e Importance des valeurs propres.

Parenthese (
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Définition : étant donné une matrice carrée M on appelle vecteur propre ¢ associé a la valeur

(scalaire) propre A a tout vecteur non-nul (porquoi non-nul 7) tel que My = Av.
e Il n’existe pas de vecteur propre sans valeur propre, et vice-versa.
e Les directions correspondantes aux vecteurs propres sont vraiment spéciales.

e Tout vecteur propre nous donne une solution particuliere de ’équation différentielle
y(t) =a(t)0 = y'(t) =d'(t)v,  My=Aa(t)v
et ’équation ' = My n’est plus vectorielle mais scalaire : a’(t) = Aa(t).

e Mais ...\ peut étre “compliqué” : les valeurs propres sont les racines d’un certain

polynome associé a la matrice. En général A € C (!!!)
Pour ne pas ouvrir une deuxieme parenthese disont que la forme générale de a(t) est
e [cy cos(Bt) + cy sin(St)], 1, Co constantes.
On appelle a la partie réelle de A et § sa partie imaginaire :
e si o >0, a(t) n’est pas borné quand ¢ tends vers o0,
e si a <0, a(t) tends vers zéro quand ¢ tends vers +oo,

e sia=0, (et B#0) a(t) est une fonction périodique de t.
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Parenthese )

En conclusion, pour un point critique donné

e Si toutes les valeurs propres ont une partie réelle strictement négative, au voisinage du
point critique les solutions vont tendre vers celui-ci avec le temps. [point asymptotiquement
stable]

e Si il a au moins une valeur propre a partie rélle strictement positive, au voisinage du point

critique des solutions vont s’éloigner. [point instable]

e Dans toute autre situation on ne peut pas conclure sur la stabilité du point a partir de

I’approximation linéaire et une étude plus approfondie est nécéssaire.

Tout cela n’ait des travaux de Poincaré® et continue de nos jours avec multitude de questions

ouvertes, ne serait-ce qu’en relation avec la théorie du chaos (I’effet papillon).

@Mémoire sur les courbes définies par une équation différentielle (I), H. Poincaré, Journal de Mathématiques
Pures et Appliquées Volume 7, pages 375422, (1881) ; Mémoire sur les courbes définies par une équation
différentielle (IT), H. Poincaré, Journal de Mathématiques Pures et Appliquées Volume 8, pages 251-296(1882)
; Sur les courbes définies par les équations différentielles (III), H. Poincaré, Journal de Mathématiques Pures et
Appliquées Volume 1, pages 167-244 (1885).
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2  Outils mathématiques

2.1 Motivation d’une “formulation fractionnaire”

Les systemes complexes (verre, cristaux liquides, polymeres, protéines, les étres vivants, les
écosystemes - humains inclus - etc.) se charactérisent par posséder un gran nombre d’éléments
qui interagissent entre eux. On y trouve, aussi, de multiples échelles et des phénomenes de

mémoire. Les matériaux viscoélastiques en sont un exemple.

Comme alternative aux modeles avec des dérivées “classiques”, on considere depuis déja un bon

nombre d’années des modeles, dits “fractionnaires”, ayant des dérivées d’ordre non-entier.

2.2 Quelques détails historiques

Le 28 février 1695 #, Leibniz écrit une lettre a (Johann) Bernoulli en réponse a un
developpement en série (de “Taylor” )P proposé par Bernoulli pour la primitive d'une fonction.
Leibniz, qui était apparemment malade, fait une erreur qui comprends des dérivées d’ordre

négatif dans ces developpements.

aS. Dugowson, Les différentielles métaphysiques: histoire et philosophie de la généralisation de [’ordre de
dérivation, Ph.D. Dissertation, Université Paris Nord, 1994.
PA ce moment Taylor est agé de moins de dix ans. ..
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Une correspondence s’ensuit ou tous deux discutent de différent détails. De L’Hopital se joint a
eux et c’est dans une lettre qu’il recoit de Leibniz, du 30 september 1695, ot celui-ci introduit
des dérivées d’ordre non-entier® toujours dans le cadre des développements en série. Leibniz
finit par remarquer sur la possible interprétation : “comme toute paradoxe, celle-ci peut fournir

des résultats intéressants dans un futur.”

Si bien différents auteurs, tels que Euler en 1730, Lagrange en 1754 ou Fourier en 1822, se sont
penchés sur le sujet, il faut attendre qu’Abel, en 1823, 'utilise pour résoudre le probleme de
I'intégrale tautochrone, pour que quelqu’un propose une formulation générale, ce que fait
Liouille en 1832.

A partir de ce moment une formulation por des intégrales d’ordre non-entier est batie avec des
contributions (entre autres) de Riemann, Laurent, Hadamard, Heaviside, Sonin, Griinwald,
Letnikov, etc., uses preferably the so called fractional integrals, because of their properties. A

partir de ces intégrales des dérivées d’ordres non-entiers sont définies.

De nos jours ce sont, dans beaucoup de cas, des applications d’ingénierie qui ont fait croitre
I’intéret, suivi de ’analyse mathématique de leurs propriétés. On trouve maintenant plusieurs
définitions que I’on applique, par exemple, en hydrodynamique pour décrire des fluides
viscoélastiques, ou dans des processus de diffusion anormale, ou de controle de modeles avec

mémoire, etc.

°plus exactement, des différentielles d’ordre non-entier
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2.3 Fonction Gamma de Euler et fonctions de Mittag-Leftler

La fonction gamma (majuscule) de Euler, I' (notation, par contre, due a Legendre), peut étre

considérée comme une généralisation de la factorielle. Elle est définie pour z € Rt 4 par :

['(2) ::/ s~ te~5ds,
0

et satisfait, entre autres les propriétés :

d’ou I'on déduit

dEn général z € C avec Re(z) > 0 mais, bon, restons réels.
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Figure 1: Représentations de la fonction I' de Euler, pour des valeurs positives, et de la factorielle
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De son coté, les fonctions de Mittag-Leffler généralisent la fonction exponentielle. Elles sont
définies par :

o k

44 €T
Eo(2) = ZF(OAI{'—I—]_)’ (> 0), Ey(z) =¢€”,
k=0
=3 = (0,8 0)
Eoglx) = , a, 3> 0), Eo1=FE,,
P c— I'(ak + p)
= (k4! 2F
l .
Bl 4z szrak+5 7 (@B>01EN), ES 3= Eag.

Ces exponentielles généralisées, avec des arguments négatifs, F,(—kt), k > 0, ont un
comportement semblable a celui de ’exponentielle pour 0 < a < 1, mais pour 1 < a < 2 elles

présentent des oscillations amorties.
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Figure 2: E,(—t) por quelques valeurs de «, avec o € (0,1) ou « € (1,2).
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2.4 Intégrales fractionnaires

Il est possible d’'imaginer une dérivée d’ordre non-entier a partir des transfomées de Fourier ou

de Laplace :
o Si F(f™)(x) = (2mir)"F(f)(x), & quoi correspond F~* ((27T7j/1)0‘.7:(f)(/1)), quand « ¢ N?

p"k FE=1(0), & quoi correspond £ (po‘([,f)(p)), a & N?

M:

o SiL(fM(x)) =

k=1
Cependant on part d’une autre aproche, en généralisant un idée bien différente.
Formule de l’'intégrale itérée de Cauchy

De la méme facon que 'on peut penser a des dérivées succesives pour une fonction :

f(z), Df(z)=f'(z), D*f(z)=f"(x),..., D"f(z)=f" (),

on peut envisager itérer l'intégration :

— /a xf(t) dt, T*f( / dx; / f(t)ydt, If(z) = /a xdxl /a xlde /a xsf(t) dt
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La formule de Cauchy représente l'iteration d’n intégrations succéssives avec unique integrale

convolution® :

" f(z) :/: dary / dazs .../jnlf(t) dt ﬁ/j(x—t)”lf(t) dt.

Etant donnée la généralisation de la factorielle, I'intégrale fractionnaire de Riemann-Liouville

d’ordre o > 0 est définie commeP :

o, f(x) = ﬁ / =0 () dt, @ elab]

Ce sont des opérateurs non locaux ayant les suivantes propriétés :
e Les intégrales son bien définies si f € L'[a, b].
e Quand o € N on retrouve le cas “classique”.

e Loi des indices (demi-groupe) : soient f € L[a,b] et o, 3 > 0, alors, p.p. en ]a, b],

(18,12, F) (@) = (ISP ) ().

aJe vous invite a le démontrer (par récurrence sur n).
PA.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations,
Elsevier, Amsterdam 2006.
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e L’intégrale d’'une puissance est une puissance : soient 3 > 0 et a > 0, alors

12 (e -y~ = L)

_ \BHa—1
(6+04) (ZE CL) * y P-P-

2.5 Dérivée de Riemann-Liouville

On la définie comme :

(Dgy f)(x) == (D I f) (x) = - 1

n—a) dx"

[ =it

avec n tel que n — 1 < a <n, n € N (notation: n = [«]) et o D représente la dérivée usuelle.
Si o =n € N, on retrouve ’expression usuelle qui correspond. Mais en général la dérivée

correspond a un operateur non local.

Quelques propriétés
e La dérivée est bien définie pour des fonctions f € AC"[a,b] : C" Ya,b], f*~V) € AC]a,b].
continue D lipschitzienne O Absolument Continue D dérivable.

e Limites aux ordres naturels :

lim (Dg, f)(z) = [ (x).

a—n
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e Dérivée d’une puissance : soient 5 > 0 et a > 0, alors
o _ I'(B) e
DY (v —a)f = ——— (z—a) L

e Dérivée d’une constante : soit 0 < a < 1, alors

(r —a)™

D% 1= :
at 'l —«)
Par ailleurs :
D y(x) =0 <= y(x) chx—a
71=1

avec cj,d; des constantes arbitraires.

e Loies des indices : soient f € Ll[a,b], o, 8 > 0, alors p.p.

« (D2,DE, 1)(e) = (D5 D) - S0 Dlan) T g =

F(l—]—oz)’
w (D I3y () = f(o),

« (I3, D5, Na 2_;F ]

x (Dydg (@) = g7 (), sta =8, (D g @) = (Da"f)(@), sia < 8.
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e Probleme de Cauchy avec une dérivée de Riemann-Liouville : la solution de
Dg—l—x(t):f[tax(t)]a OA>O, t>a’7
avec
Dg‘;kx(cﬁ) = by, by €R, k=0,1,...,n—1, n=|al,
(Dg‘;kx(cﬁ) = lim Dg‘;kx(t»

t—aTt

existe et est unique avec les mémes hypotheses que pour le cas d’ordre entier. Mais...
e les conditions sont bizarres,

e quel serait le space des phases ?

2.6 Dérivée de Caputo

Pour avoir un probleme de Cauchy avec des conditions ayant des dérivées d’ordres entiers on

peut avoir recours a la dérivée de Caputo définie par :
_ 1 v —a—1 4" f(?)
CDa .— ([P pn - = _ f)yno 1—dt
(D2 @) = (15D @)= jo—as [ =0 i
Cela correspond a intervertir la dérivation et I'intégration dans la formule de R-L. La fonction f

est maintenant plus réguliere puisque sa derivée n-ieme doit exister.
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Quelques propriétés

e Relation entre les dérivées de R-L et C :

D¢ — CDa . j—a.
( a-+ )(l‘) ( a-+t+ )(l‘) +jz:; F(l _|_] —Of) (I‘ a’)
e Derivée d’une constante :
(CDngl) -

e Soient a > 0, [a] =n et k € [1,n — 1], alors
DY, (x —a)¥ =0.
e Probleme de Cauchy avec une dérivée de Caputo : la solution de
Dy x(t) = flt,z(t)], a>0,t>a,

avec
D§+x(a+):bk, b € R, k=0,1,....n—1, n=[a],

existe et est unique avec les mémes hypotheses que pour le cas d’ordre entier.
e Fonctions (vecteurs) propres : soient a > 0, A € C,
Dg  Eq(A(t —a)®) = AEL(A(t —a)?).
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Figure 3: Fonctions propres de la dérivée de Caputo, A = —1, E,(—t%).
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2.7 Dérivée de Grunwald-Letnikov

C’est une aproche bien différente :

PR =@ 1) i (@) — £z — 1),

/ _ .
(@)= lim h dim, >
f(x)—f(x—h) f(x—h)—f(x—2h)

_ fl@) = flz—h) flo=h) _ .

1" _
PO=im ™ h
, 1
~ lim - (f(2) = 2f (= h) + f(z = 2m)),

FO @) = tim oo (f(x) ~ 3z~ h) +3f(x — 2h) — f(z —3h)).

h—0 h3
FO () = Jim o ()~ Afr—h) + 67 (x — 2h) — 4f(x — 30) + f(x — 4h) ),

etc.

Quels sont ces coéfficients 7

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 2 Introduction : systemes dynamiques  23/38



La formule générale est bien :

f(”)(:L‘) — lim 1 Z(—l)e (ZJ) f(x —£h), néeN.

h—0 h"
=0

(S

Extension fractionnaire : étant donné que

on choisi :
n

a’ .1 ['(a+1)
e d (@ = lim 2 ) (-1 — R
dze ! @) ;igﬁivxgég( ),aI(C¥+_1__£)fo th), o€

Le probleme : n, la valeur supérieure de la somme, n’as plus aucun sens. Si on considere

x € [a,b] (et b pourrait méme étre +00), on peut écrire

X — a X — a
> N = ,
n h

et on substitue n par la partie entiere de cette valeur. On défini, finalement :

ao p ] C(a+ 1)

= 1 - 1 I IR R"‘_
dz® (z) hi>I(IJI+ ho ;( )g!p(a+1_€)f($ ), €

h = h > 0,

Dans la pratique, la limite en h est tronquée et une petite valeur de h (suffisamment petite) est
choisie pour obtenir une approximation.
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3 FODE models

There have been bottom-up generated models, arising from actual applications. For instance in
control or in the study of visco-elastic media [3]. There have also been top-down generated

models, trying to see what consequences can be obtained “fractionalizing” a given integer-order
ODE, with different success.

3.1 Some tools

The fractional derivatives are linear operators. This allows to preserve some interesting features
of the integer-order case (especially true in the case of the Caputo Derivative).

e “Fractional Picard Theorem”: existence and unicity of the solution for the ivp

dz
oos: — = f(t,x), rooe: o, D¢ = f(t,x), if f is continuous in ¢ and Lipschitz in x. (1)

dt

e For linear equations the superposition principle holds: linear combinations of solutions are
solutions.

e Laplace and Fourier Transform can be applied.
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Linear, homogeneous, equations with constant coefficients have as space of solutions a

vector space spanned by the eigenfunctions of the differential operator:
dx

ODE: I = M2z, robe: DT = MZ, Z(t) = zk: ci fr (1) Uk (2)

Similarly if we add a constant: the solution is the general solution of the homogeneous
equations plus a particular solution of the inhomogenous system:

dxr -
ODE: d—f = Mz + c, rooe: DT = MZ + ¢, f(t) :fp(t) + zk: Ck:fk(t)ﬁk;- (3)

Linear stability analysis of hyperbolic critical points is valid (first Lyapunov method [4]):
arg € [—m,m)
ODE: Vk,Re(Ak) <0 <= Vk, |arg()\k)\ > 7T/2 (4)
FODE: Vk, ]arg()\k)\ > OA7T/2, o < (0, 1) (5)
Nonlinear stability analysis by the second Lyapunov method exists (Lyapunov function[5]):

obe: Strong stability, ropr: “Mittag-Leffler” stability (implies strong stability).

Critical points correspond to constant solutions (Caputo):

A7+ . Y
ODE;d—f:f(f), voos: DT = f(£), (&) =0. (6)
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3.2 Drawbaks

Some properties, many of which are everyday tools, do not transfer to the fractional models.
e The Leibniz rule is not valid.

e The chain rule is not valid.

The eigenfunctions of fractional derivatives are not orthogonal (thus, no Fourier Series).

Higher order equations do not correspond necessarily to a system of unique order.

What is now the phase space?

S. Jiménez, Le calcul fractionnaire comme outil de modélisation 3/14/2025 3 Some FODE models 27/38



3.3 An example: a visco-elastic linear model

We consider a thin plate of surface s moving vertically in a fluid of density

p, with viscosity u, attached to a spring with constant k, subject to an
external force f(t). The behaviour of the displacement () is modeled
Lk by the fractionally damped equation:

¥+ a’D + kx = f(¢) (7)

with a some constant that depends on i, p and s.

This linear system can be (formally) solved by the Laplace transform,
depending on the initial conditions z(0), ©(0).

Let be £ (z(t)) =Y (p), L (f(t)) = F(p):

F(p) + (p+ap* )z(0) + (1 + ap*2)2(0)
p* +ap® + k |

Y(p) =

In the cases where 2/« is rational, with zero initial conditions, it can be formulated, by
congruent decomposition as a spectral problem for some basic operator °DP/4.
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Application: a = 3/2, z(0) = #(0) = 0.
Since we have zero initial conditions we have:
CD1/2(0D1/2$) — D22y ete.

We define auxiliary variables x; such that xo = x and express the equation as

2

D20 (t) = z1(1),
D21 (t) = zo(t),

§ DY 2xy(t) = x3(t), —  °DY27 = Mz + ().
°DY2g5(t) = —kxo(t) — axs(t) + f(1),

L 2,(0)=0, k=0,1,2,3

0O 1 0 0 T 0

0O 0 1 O 0
M — 3 f = ch , 17 —

0 0 0 1 T2 0

-k 0 0 —a T3 f(t)

We then diagonalize M, uncouple the equations representing ¥ in a basis of eigenvectors

(complex), solve and, finally, transform back to obtain z(t) = xo(¢).
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Or we can solve numerically: (the periodic limit cycle is not a solution)

261 ‘
oy S—
3+ 7 )
2605 I 7
27 |
26
| |
0 - > oo
_1 | 7
2.59
2 | 7
2585
_3 B 7
\ \ \ \ \ \ \ 2.58 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3 0.61 0.615 0.62 0.625 0.63 0.635 J

Figure 4: a =3, k=1, f(t) = 8cos(t)
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Second example: Bagley-Torvik Equation

It corresponds to the i.v.p. with Caputo fractional derivative of order 3/2 given by:
D2x(t) 4+ 2D3/2x(t) — 3z(t) = sin(t),
z(0) = 2/(0) = 0.

we can solve it, as the previous example, by congruent decomposition. The linear system is, in

this case:
DY2E(t) = MZ + ¢,

0O 1 0 O 0 0

0O 0 1 O 0
M — y f = xl , 8:

0O 0 0 1 T2 0

3 0 0 -2 T3 sin(t)

The eigenvalues of M are:

/2 /2
)\1:1, )\2:—1—\3/5, )\3,4:—1%—7\/7:&’6'\/57\/_.

In the “classical” case (o = 1) the solution is unbounded:

1, 1, 1 1
x(t) = 3¢ " 10° 0 cos(t) 5sm(t).

But for a = 3/2 we obtain a periodic curve as the limit.
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Figure 5: solution of the Bagley-Torvik Problem for a = 1 and for a = 3/2.
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3.4 An example: a visco-elastic nonlinear model

(eieciricai signal

The equation

strain gauge

i+ 7D — x + 2° = fycos(wt) (8)

is a “visco-elastic-damped” counterpart

Sinusoidal
exciting

force of the Duffing equation:

I'1 Roeam &4y —x+1° = focos(wt).  (9)
I
/ It corresponds to the same device but
X magnet
Ee | inmersed in a visco-elastic fluid. With a

) Jrigid frame

Cauchy problem z(0) = z¢, ©(0) = vy,
Figure 2.2.1. The magneto-elastic beam. ) . . . ]
it has a unique solution starting at time

to = 0.
Figure 6: Guckenheimer & Holmes [6], experimental

setup of the Duffing equation.
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Figure 7: The strange attractor of the integer-oder (left) and of the fractional-order Duffing
equation (right).

Property

Let us consider, for instance, the following initial value problem:

iy ( %x)t (t) — F(z) = focos(wt),
ZC(tl) =a, Zb(tl) =b.
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We use:

e C Fwa(r)
(thx)t () = F(nl—a) /t1 (th)O‘“_” ar

1 ’ aannx(tl‘FU)
= g d t:t 5 — t
F(n—a)/o (5 — o)o+in o [ 1+s, T=o0+1]

= ("“Dgsx), (t1 +s) = (D) (s),  [y(s) =x(t1 + s)] (11)

and we rewrite (10) as

y" 4+ v (°Dgyy). (s) — F(y) = focos(ws + ¢o), do = wty,

y(0) =a, y'(0)=0. 1

where the prime stands for derivation with respect to s. We obtain the same system as (10) but
at t = 0 and with an initial time-phase. If, for instance, t; = 27 /w, a = ¢ and b = vy, (12)

becomes (8).
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Conclusions

e All solutions can be reached from tog = 0 We may consider that any solution that starts at
a later time is, in fact, a solution that started at ty = 0 but with a phase.

e We still don’t know... We still don’t know how to prolong a given solution from the

“state” it is at a given time.

e But... Our Cauchy problem, for any solution, can be stated at time ¢y = 0 with three

values: g, vg and ¢g.
e 3-dim space We conclude that our phase space has three dimensions: R x R x [0, 27).

e 2-dim in practice for many purposes Just as for a noautonomous “classical” system. Since
the initial phase is a constant, it is not relevant for many aspects when analysing the

solutions.

e So... What is the phase space, in practice, for a fractional system? The space of initial

conditions or the space of conditions to prolong a solutions?

See for instance [7, 8].
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